
June 1990 Report No. STAN-CS-90-1326

Thesis

Learning in Embedded Systems

by

Leslie Pack Kaelbling

Department of Computer Science

Stanford University

Stanford, California 94305

PB96-149901

As
OJfti

19970423 210

DTIC QUALITY INSPECTED 1

Learning in Embedded Systems

Leslie Pack Kaelbling

June 1990

A dissertation submitted to the Department of Computer Science and the Committee
on Graduate Studies of Stanford University in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

© Copyright 1990 by Leslie Pack Kaelbling

I certify that I have read this thesis and that in my

opinion it is fully adequate, in scope and in quality, as

a dissertation for the degree of Doctor of Philosophy.

lls J. Nilsson
(Principal Adviser)

I certify that I have read this thesis and that in my

opinion it is fully adequate, in scope and in quality, as

a dissertation for the degree of Doctor of Philosophy.

St<w£^J. fL^^t^j
Stanley J. Rosenschein

I certify that I have read this thesis and that in my

opinion it is fully adequate, in scope and in quality, as

a dissertation for the degree of Doctor of Philosophy.

John McCarthy/

I certify that I have read this thesis and that in my

opinion it is fully adequate, in scope and in quality, as

a dissertation for the degree of Doctor of Philosophy.

/uMJA\JtM^
Richard S. Sutton

(GTE Laboratories Incorporated)

Approved for the University Committee on Graduate

Studies:

Dean of Graduate Studies

in

Abstract

This dissertation addresses the problem of designing algorithms for learning in em-

bedded systems. This problem differs from the traditional supervised learning prob-

lem. An agent, finding itself in a particular input situation must generate an ac-

tion. It then receives a reinforcement value from the environment, indicating how

valuable the current state of the environment is for the agent. The agent cannot,

however, deduce the reinforcement value that would have resulted from executing

any of its other actions. A number of algorithms for learning action strategies

from reinforcement values are presented and compared empirically with existing

reinforcement-learning algorithms.

The interval-estimation algorithm uses the statistical notion of confidence in-

tervals to guide its generation of actions in the world, trading off acting to gain

information against acting to gain reinforcement. It performs well in simple do-

mains but does not exhibit any generalization and is computationally complex.

The cascade algorithm is a structural credit-assignment method that allows an

action strategy with many output bits to be learned by a collection of reinforcement-

learning modules that learn Boolean functions. This method represents an improve-

ment in computational complexity and often in learning rate.

Two algorithms for learning Boolean functions in fc-DNF are described. Both

are based on Valiant's algorithm for learning such functions from input-output in-

stances. The first uses Sutton's techniques for linear association and reinforcement

comparison, while the second uses techniques from the interval estimation algo-

rithm. They both perform well and have tractable complexity.

A generate-and-test reinforcement-learning algorithm is presented. It allows

symbolic representations of Boolean functions to be constructed incrementally and

tested in the environment. It is highly parametrized and can be tuned to learn

a broad range of function classes. Low-complexity functions can be learned very

efficiently even in the presence of large numbers of irrelevant input bits. This

algorithm is extended to construct simple sequential networks using a set-reset

operator, which allows the agent to learn action strategies with state.

These algorithms, in addition to being studied in simulation, were implemented

and tested on a physical mobile robot.

VI

Acknowledgements

My first thanks go to Stan Rosenschein. He has been a colleague and mentor,

providing me with lots of ideas, criticism and inspiration, and with two excellent

environments for carrying out research. Thanks to John McCarthy for getting me

interested in AI and to Nils Nilsson for making me go back to school before I forgot

how. Rich Sutton helped me to ground my work in the context of existing literatures

I had never heard of and suggested interesting extensions of my basic ideas. Jeff

Kerr and Stanley Reifel have provided robots to play with and lots of help and good

advice. David Chapman, Stan Rosenschein, Rich Sutton and Nils Nilsson provided

insightful comments on drafts of this dissertation; they have helped the clarity of

the exposition considerably. Thanks to Ann Reid for baking the scones and being a

distraction. Many other colleagues at Stanford, CSLI, SRI and Teleos have helped

in indirect but important ways. David Kaelbling has been kind and patient through

all this and was a big help with running the experiments.

Finally, I would like to dedicate this dissertation to the memory of my parents,

who taught me I could do anything if I tried.

This work was supported in part by the Air Force Office of Scientific Research under

contract F49620-89-C-0055, in part by the System Development Foundation, and

in part by Teleos Research IR&D.

Vll

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Why Learn? 1

1.2 Reinforcement Learning 2

1.3 Models versus Action Maps 5

1.4 Statistical versus Symbolic Learning 5

1.5 Organization 7

2 Foundations g

2.1 Acting in a Complex World 9

2.1.1 Modeling an Agent's Interaction with the World 10

2.1.2 Inconsistent Worlds 11

2.1.3 Learning Behaviors 18

2.2 Performance Criteria 21

2.2.1 Correctness 21

2.2.2 Convergence 27

2.2.3 Time and Space Complexity 30

2.3 Related Foundational Work 32

3 Previous Approaches 35

3.1 Bandit Problems 35

ix

3.2 Learning Automata 37

3.2.1 Early Work 37

3.2.2 Probability-Vector Approaches 39

3.3 Reinforcement-Comparison Methods 42

3.4 Associative Methods 43

3.4.1 Copying 44

3.4.2 Linear Associators 44

3.4.3 Error Backpropagation 46

3.5 Genetic Algorithms 47

3.6 Extensions to the Model 51

3.6.1 Non-Boolean reinforcement 52

3.6.2 Nonstationary environments 52

3.7 Conclusions 53

4 Interval Estimation Method 55

4.1 Description of the Algorithm 56

4.2 Analysis 58

4.3 Empirical Results 65

4.4 Experimental Comparisons 67

4.4.1 Algorithms and Environments 67

4.4.2 Parameter Tuning . . . 68

4.4.3 Results 69

4.5 Extensions 71

4.5.1 Multiple Inputs and Actions 71

4.5.2 Real-valued Reinforcement 73

4.5.3 Non-stationary environments 75

4.6 Applicability of this Algorithm 76

5 Divide and Conquer 79

5.1 Boolean-Function Learners 79

5.2 Cascade Algorithm 80

5.3 Correctness and Convergence 82

x

5.3.1 Correctness 82

5.3.2 Convergence 84

5.4 Example 85

5.4.1 Complexity 85

5.4.2 Performance 86

6 Learning Boolean Functions in fc-DNF 89

6.1 Background 89

6.2 Learning fc-DNF from Input-Output Pairs 90

6.3 Combining the LARC and VALIANT Algorithms 91

6.4 Interval Estimation Algorithm for fc-DNF 92

6.5 Empirical Comparison 94

6.5.1 Algorithms and Environments 95

6.5.2 Parameter Tuning 96

6.5.3 Results 96

6.5.4 Discussion 98

6.6 Conclusion 102

7 A Generate-and-Test Algorithm 103

7.1 Introduction 103

7.2 High-Level Description 105

7.3 Statistics 107

7.4 Evaluating Inputs 108

7.5 Managing Hypotheses 109

7.5.1 Adding Hypotheses 110

7.5.2 Promoting Hypotheses 114

7.5.3 Pruning Hypotheses 114

7.6 Parameters of the Algorithm 115

7.7 Computational Complexity 115

7.8 Choosing Parameter Values 118

7.8.1 Number of Levels 118

7.8.2 Number of Working and Candidate Hypotheses 118

xi

7.8.3 Promotion Age 123

7.8.4 Rate of Generating Hypotheses 123

7.8.5 Maximum New Hypothesis Tries 123

7.9 Empirical Results 124

7.9.1 Sample Run 124

7.9.2 Effects of Parameter Settings on Performance 124

7.9.3 Comparison with Other Algorithms 128

7.10 Conclusions and Extensions 131

8 Learning Action Maps with State 133

8.1 Set-Reset 134

8.2 Using SR in GTRL 135

8.2.1 Hypotheses 135

8.2.2 Statistics 137

8.2.3 Search Heuristics 138

8.2.4 Complexity 138

8.3 Experiments with GTRL-S 138

8.3.1 Lights and Buttons 139

8.3.2 Many Lights and Buttons 141

8.4 Conclusion 143

9 Delayed Reinforcement 145

9.1 Q Learning 145

9.2 Q-Learning and Interval Estimation 147

9.3 Adaptive Heuristic Critic Method . . 149

9.4 Other approaches 152

9.5 Complexity Issues 154

9.6 Empirical Comparison 155

9.6.1 Environments 155

9.6.2 Algorithms 158

9.6.3 Parameter Tuning 158

9.6.4 Results 159

xii

9.6.5 Discussion 160

10 Experiments in Complex Domains 165

10.1 Simple, Large, Random Environment 165

10.1.1 Algorithms 166

10.1.2 Task 166

10.1.3 Parameter Settings 166

10.1.4 Results 167

10.2 Mobile Robot Domain 167

10.2.1 Algorithms 170

10.2.2 Task 170

10.2.3 Results 170

10.3 Robot Domain with Delayed Reinforcement 172

10.3.1 Algorithms 173

10.3.2 Task 173

10.3.3 Results 173

11 Conclusion 177

11.1 Contributions 178

11.2 Future Work 180

A Statistics in GTRL 183

A.l Binomial Statistics 183

A.2 Normal Statistics 185

A.3 Non-parametric Statistics 187

B Simplifying Boolean Expressions in GTRL 189

xni

List of Tables

1 Parameters of test environments 67

2 Best parameter value for each algorithm in each environment 68

3 Average reinforcement over 100 runs of length 1000 69

4 Parameters of test environments for fc-DNF experiments 96

5 Best parameter values for each fc-DNF algorithm in each environment. 97

6 Average reinforcement for fc-DNF problems over 100 runs of length

3000 97

7 Difficulties of classes of 3-input Boolean functions 122

8 Best parameter values for GTRL on Tasks 5, 6, and 7 from Chapter 6. 128

9 Best parameter values for each algorithm in environments Dl, D2,

and D3 159

10 Average reinforcement for tasks Dl, D2, and D3 over 100 runs of

length 3000 160

11 Average reinforcement for simulated mobile robot environment over

100 runs of length 2000 171

12 Average reinforcement for simulated robot domain with delayed re-

inforcement over 10 runs of length 10,000 174

xv

List of Figures

1 An agent's interaction with its world 11

2 Modeling faulty effectors as a probabilistic world transition function. 14

3 Modeling faulty sensors with multiple probabilistic transitions. ... 15

4 Modeling faulty sensors as a probabilistic world transition function. . 16

5 Modeling inability to discriminate among worlds 17

6 Modeling inability to discriminate among worlds as a probabilistic

world transition function 17

7 Decomposition of a learning behavior 19

8 General algorithm for learning behaviors 20

9 A sample deterministic world. The numbers represent the immediate

reinforcement values that the agent will receive when it is in each of

the states. The only choice of action is in state A 24

10 Plot of expected return against horizon k. Solid line indicates strat-

egy of going left first, then behaving optimally. Dashed line indicates

strategy of going right first, then behaving optimally. 25

11 Plot of expected return against discount factor 7. Solid line indicates

strategy of always going left. Dashed line indicates strategy of always

going right 25

12 Formal description of the BANDIT algorithm 36

13 The Tsetlin automaton 38

14 The linear reward-penalty (LRP) and linear reward-inaction (LRJ)

algorithms 40

15 The TS algorithm 41

xvii

16 A reward-comparison (RC) algorithm 43

17 Constructing an associative algorithm by making copies of a non-

associative algorithm 44

18 The linear-associator reinforcement-comparison (LARC) algorithm. . 45

19 An application of error backpropagation to reinforcement learning:

data structures 48

20 An application of error-backpropagation to reinforcement learning:

update and evaluation functions 49

21 The interval-estimation (IE) algorithm 57

22 A sample run with po = .55, pi = .45, and za/2 = 1.96. In this case,

it converges very quickly. 58

23 Another sample run with po = -55, pi = .45, and zQ/2 = 1.96. This

time, the two actions battle for a long time, but a0 is clearly winning

after 10,000 trials 59

24 Expected regular error on an infinite run as a function of 6, with

za/2 = 1.96 60

25 A sample run with po = .55, pi = .45, and zQ/2 = 1.96. The first

action almost gets stuck 61

26 A sample run with po = -55, pi = .45, and z0/2 = 1.96. Here, the

first action really does get stuck below the second 62

27 The random walk x0(t) and function f(t) 63

28 New random walk in inverted coordinate system 64

29 Expected regular error and sticking error plotted as a function of za/2. 65

30 Regular error as a function of £; dots indicate the mean regular error

on 1079 runs of length 10,000; the curve is predicted error 66

31 Error due to sticking as a function of 6; dots indicate the mean error

due to sticking on 1079 runs of length 10,000; the curve is predicted

error 66

32 Significant dominance partial order among algorithms for each task. 70

33 Learning curves for Task 1 71

34 Learning curves for Task 2 72

xviii

35 Learning curves for Task 3 72

36 Learning curves for Task 4 73

37 A cascaded learner constructed from BFL's 80

38 The CASCADE algorithm 81

39 Performance of interval estimation algorithm on 5-bit adder problem

using copying method and cascade method of generating multiple

outputs 87

40 The linear-association reinforcement-comparison algorithm for learn-

ing functions in fc-DNF from reinforcement 91

41 The interval estimation algorithm for learning concepts in ifc-DNF

from reinforcement 93

42 Significant dominance partial order among fc-DNF algorithms for

each task 99

43 Learning curves for Task 5 100

44 Learning curves for Task 6 100

45 Learning curves for Task 7 101

46 High-level description of the GTRL algorithm 106

47 Example GTRL internal state 106

48 Code to generate the best new hypothesis 113

49 A sample run of the GTRL algorithm 125

50 Performance versus parameter value PA for Task 8 126

51 Performance versus parameter value R for Task 8 127

52 Performance versus parameter value H for Task 8 127

53 Significance of GTRL results on Tasks 5, 6, and 7, compared with the

results of the algorithms of Chapter 6 129

54 GTRL learning curve for Task 5 (bold) compared with the algorithms

of Chapter 6 130

55 GTRL learning curve for Task 6 (bold) compared with the algorithms

of Chapter 6 130

56 GTRL learning curve for Task 7 (bold) compared with the algorithms

of Chapter 6 131

xix

57 Timing diagram for a set-reset flip-flop 134

58 A sample sequential network, described by SR(->&o,6i A b2) A (6X V

SRCSRCicti),-^) 136

59 This circuit generates the sequence 0,1,0,1,...; because it has feed-

back, it cannot be constructed by the GTRL-S algorithm 136

60 A sample run of the GTRL-S algorithm on the simple lights and but-

tons problem 140

61 A sample run of the GTRL-S algorithm on the two-bit lights and

buttons problem. Only the 4 most predictive hypotheses are shown

at each non-atomic level 142

62 The Q-learning algorithm 146

63 The IEQ algorithm 148

64 The AHC algorithm 150

65 Environment Dl: a very simple delayed-reinforcement environment. 155

66 Environment D2: a more difficult delayed-reinforcement environment. 155

67 Environment D3: a highly misleading delayed-reinforcement environ-

ment 156

68 Significant dominance partial order among delayed-reinforcement al-

gorithms for each task 160

69 Learning curves for Task Dl 161

70 Learning curves for Task D2 161

71 Learning curves for Task D3 162

72 Learning curves for large, random environment 168

73 Spanky, a mobile robot 169

74 Learning curves for the simulated mobile robot task 172

75 Learning curves for the simulated delayed-reinforcement mobile robot

task 175

xx

Chapter 1

Introduction

Embedded systems, such as autonomous robots and process controllers, must be

able to learn about and adapt to their environments. This dissertation addresses

the problem of designing algorithms for learning in embedded systems. It provides

a formal framework in which this problem can be explored, discusses previous work

in this area, and then goes on to present novel algorithms for efficient and effective

learning in embedded systems. These algorithms are explored theoretically and are

validated empirically, both in simulation and in use on a mobile robot.

1.1 Why Learn?

Why should we build learning agents? A program that "learns" is not intrinsically

better than one that does not.

One reason to build learning agents is that it is very difficult for humans to write

explicit programs for agents that must work in complex, uncertain environments.

In programming robots, for instance, it is common for a human programmer to

learn a great deal about the operation of the robot's sensors and effectors in the

course of debugging programs for the robot. It would be much easier and less time-

consuming if the programmer were able to articulate only general principles about

the environment, allowing the robot to experiment and learn about the details.

1

2 CHAPTER 1. INTRODUCTION

Another reason for building agents that learn to act is that we would like to

have agents that are flexible enough to work in a variety of environments, adapting

their perception and action strategies to the worlds in which they find themselves.

Even if a human could completely specify the program for an agent operating in

a particular environment, the agent's program would have to be respecified if the

agent were moved to a new environment.

1.2 Reinforcement Learning

When building learning agents, the goal of the agent's designer is for the agent

to learn what actions it should perform in which situations in order to maximize

an external measure of success. All of the information the agent has about the

external world is contained in a series of inputs that it receives from the environment.

These inputs may encode information ranging from the output of a vision system

to a robot's current battery voltage. The agent can be in many different states

of information about the environment, and it must map each of these information

states, or situations, to a particular action that it can perform in the world. The

agent's mapping from situations to actions is referred to as an action map. Part

of the agent's input from the world encodes the agent's reinforcement, which is a

scalar measure of how well the agent is performing in the world. The agent should

learn to act in such a way as to maximize the total reinforcement it gains over its

lifetime.

As a concrete example, consider a simple robot with two wheels and two photo-

sensors. It can execute five different actions: stop, go forward, go backward, turn

left, and turn right. It can sense three different states of the world: the light

in the left eye is brighter than that in the right eye, the light in the right eye is

brighter than that in the left eye, and the light in both eyes is roughly equally bright.

Additionally, the robot is given high values of reinforcement when the average value

of light in the two eyes is increased from the previous instant. In order to maximize

its reinforcement, this robot should turn left when the light in its left eye is brighter,

turn right when the light in its right eye is brighter, and move forward when the

1.2. REINFORCEMENT LEARNING 3

light in both eyes is equal. The problem of learning to act is to discover such a

mapping from information states to actions.

Thus, the problem of learning to act can be cast as a function-learning problem:

the agent must learn a mapping from the situations in which it finds itself, repre-

sented by streams of input values, to the actions it can perform. In the simplest

case, the mapping will be a pure function of the current input value, but in general

it can have state, allowing the action taken at a particular time to depend on the

entire stream of previous input values.

In the past few years there has been a great deal of work in the artificial in-

telligence (AI) and theoretical computer science communities on the problem of

learning pure Boolean-valued functions [31,43,50,55,76]. Unfortunately, this work

is not directly relevant to the problem of learning action maps because of the differ-

ent settings of the problem. In the traditional function-learning work, often referred

to in the AI community as "concept learning," a learning algorithm is presented

with a set or series of input-output pairs that specify the correct output to be gener-

ated for that particular input. This setting allows for effective function learning, but

differs from the situation of an agent trying to learn an action map. The agent, find-

ing itself in a particular input situation, must generate an action. It then receives

a reinforcement value from the environment, indicating how valuable the current

world state is for the agent. The agent cannot, however, deduce the reinforcement

value that would have resulted from executing any of its other actions. Also, if the

environment is noisy, as it will be in general, just one instance of performing an

action in a situation may not give an accurate picture of the reinforcement value of

that action.

This learning scenario reduces to concept learning when the agent has only two

possible actions, the world generates Boolean reinforcement that depends only on

the most recently taken action, there is exactly one action that generates the high

reinforcement value in each situation, and there is no noise. In this case, from

performing a particular action in a situation, the agent can deduce that it was the

correct action if it was positively reinforced; otherwise it can infer that the other

action would have been correct.

4 CHAPTER 1. INTRODUCTION

The problem of learning action maps by trial and error is often referred to

as reinforcement learning because of its similarity to models used in psychological

studies of behavior-learning in humans and animals [22]. It is also referred to as

"learning with a critic," in contrast with the "learning with a teacher" of tradi-

tional supervised concept learning [81]. One of the most interesting facets of the

reinforcement-learning problem is the tension between performing actions that are

not well understood in order to gain information about their reinforcement value

and performing actions that are expected to be good in order to increase overall

reinforcement. If an agent knows that a particular action works well in a certain

situation, it must trade off performing that action against performing another one

that it knows nothing about, in case the second action is even better than the first.

Or, as Ashby [6] put it,

The process of trial and error can thus be viewed from two very different

points of view. On the one hand it can be regarded as simply an attempt

at success; so that when it fails we give zero marks for success. From this

point of view it is merely a second-rate way of getting to success. There

is, however, the other point of view that gives it an altogether higher

status, for the process may be playing the invaluable part of gathering

information, information that is absolutely necessary if adaptation is to

be successfully achieved.

The longer the time span over which the agent will be acting, the more important

it is for the agent to be acting on the basis of correct information. Acting to gain

information may improve the expected long-term performance while causing short-

term performance to decline.

Another important aspect of the reinforcement-learning problem is that the ac-

tions that an agent performs influence the input situations in which it will find itself

in the future. Rather than receiving an independently chosen set of input-output

pairs, the agent has some control over what inputs it will receive and complete

control over what outputs will be generated in response. In addition to making

it difficult to make distributional statements about the inputs to the agent, this

1.3. MODELS VERSUS ACTION MAPS 5

degree of control makes it possible for what seem like small "experiments" to cause

the agent to discover an entirely new part of its environment.

1.3 Models versus Action Maps

One way for an agent to learn an action map is first to learn a state-transition model

of the world and the expected reinforcement value gained from being in each world

state, and then to apply standard dynamic programming techniques to choose the

best action from any given world state. Although this method will work in the

general case, the internal structures that the agent must build up will tend to be

quite complex.

When the target action-map is state-free, it can be represented much more

compactly and executed much more directly as a simple function, rather than as

a world model with a procedure for choosing the optimal action. Sutton [72] and

Whitehead and Ballard [80] have found that in cases in which the reinforcement

from the world is delayed, learning may be sped up by a kind of compilation from

a world model. However, this opens up the new problem of learning world models,

which has been addressed by a number of people, including Sutton and Pinette [73],

Drescher [18], Mason, Christiansen, and Mitchell [40], Mel [42], and Shen [68].

This dissertation will focus on methods for learning action maps without using

models. Even those methods that do use models have this simpler form of reinforce-

ment learning as a component, so improved algorithms for learning action maps will

benefit both approaches.

1.4 Statistical versus Symbolic Learning

Most previous learning work can be divided into statistical and symbolic methods.

Statistical learning encompasses much of the early learning work in pattern

recognition [54] and adaptive control [25], as well as current work in artificial neural

networks (also known as connectionist systems) [9]. The internal representations

used are typically numeric and the correctness of algorithms is demonstrated using

6 CHAPTER 1. INTRODUCTION

statistical methods. These systems tend to be highly noise-tolerant and robust.

However, the internal states are difficult for humans to interpret and the algorithms

often perform poorly on complex problems.

More symbolic approaches to learning, such as those standardly pursued in the

artificial intelligence community, attempt to address these issues of understandabil-

ity and complexity. They have resulted in algorithms, such as Mitchell's version

spaces [49] and Michalski's STAR [43], that use easily-interpretable symbolic repre-

sentations and whose correctness hinges on arguments from logic rather than from

statistics. These algorithms tend to suffer from noise-intolerance and high compu-

tational complexity, more so than statistical algorithms do.

One of the aims of the work in this dissertation is to blend the statistical and

the symbolic in algorithms for reinforcement learning in embedded systems. An

important characteristic of most embedded systems is that they operate in environ-

ments that are not (to them) completely predictable. In order to work effectively

in such environments, a system must be able to summarize general tendencies of

its environment. The well-understood methods of statistics are most appropriate

for this task. This does not, however, mean we must abandon all of the benefits of

symbolic AI methods. Rather, these two approaches can be synthesized to make

learning systems that are robust and noise-tolerant as well as being easy to under-

stand and capable of working in complex environments. A good example of this

kind of synthesis is Quinlan's successful concept-learning method, ID3 [55]. Within

the combined approach, complexity issues can be addressed by explicitly considering

limited classes of functions to be learned.

Many researchers use symbolic representations because, as Michie [45] puts it,

"In AI-type learning, explainability is all." That is not the motivation for this

work, which simply seeks the most effective algorithms for building embedded sys-

tems. There is, however, an important benefit of using symbolic representations of

concepts and strategies being learned by an agent: it may allow the learned knowl-

edge to be more easily integrated with knowledge that is provided by humans at

design time. Although such integration is not explored in this dissertation, it is an

important direction in which learning research should be pursued.

1.5. ORGANIZATION 7

1.5 Organization

The next chapter addresses the formal foundations of reinforcement learning. These

arise largely from previous work in statistics, dynamic programming, and learning-

automata theory. These foundations are important to AI because they allow widely

disparate algorithms to be compared in common, objective terms. Chapter 3 goes

on to present previous work on algorithms for reinforcement learning from a variety

of different literatures. This previous work is the direct basis of many of the new

algorithms and results presented in this dissertation.

Chapter 4 describes a novel statistical algorithm for reinforcement learning.

It empirically shows this algorithm to be more effective than a variety of other

reinforcement-learning algorithms. Finally, it discusses weaknesses of this algo-

rithm and other related algorithms, due to high computational complexity and lack

of generalization across input instances.

Chapter 5 describes a problem reduction and an algorithm that can be used to

implement it. The problem of learning an action map with many output bits can

be reduced to the problem of learning many action maps, each with a single output

bit. This will allow us to restrict our attention to learning action maps that can

be described as Boolean functions, knowing they can be recombined to form more
complex systems.

Chapters 6 and 7 each present a novel algorithm for learning Boolean func-

tions from reinforcement; these algorithms represent points on a generality-efficiency

tradeoff. The algorithm in Chapter 6 is restricted to learning Boolean functions de-

scribable as prepositional formulae in the class *-DNF, but it learns these functions

more efficiently than the algorithms of Chapters 3 and 4. The algorithm in Chapter

7 is more flexible—according to the settings of internal parameters, it can be made

more or less restricted and, hence, more or less efficient.

All of the discussion up to this point has been of environments that present

reinforcement immediately and of action maps that are pure, state-free functions.

Chapter 8 presents an extended version of the algorithm of Chapter 7 that can learn

8 CHAPTER 1. INTRODUCTION

simple action maps with state. Chapter 9 addresses the problem of delayed rein-

forcement. It presents two existing methods and shows how they may be combined

with the statistical method developed in Chapter 4.

The algorithms presented in this dissertation are finally validated through their

application to moderately complex domains, including a real mobile robot. Chapter

10 describes these experiments, documenting their successes and failures. Finally,

Chapter 11 summarizes the work presented in the previous chapters. It notes prob-

lems and points out important directions for future research.

Chapter 2

Foundations

This chapter focuses on building formal foundations for the problem of learning in

embedded systems. These foundations must allow a clear statement of the problem

and provide a basis for evaluating and comparing learning algorithms. It is impor-

tant to establish such a basis: there are many instances in the machine learning

literature of researchers doing interesting work on learning systems, but reporting

the results using evaluation metrics that make it difficult to compare their results

with the results of others. The foundational ideas presented in this chapter are a

synthesis of previous work in statistics [12], dynamic programming [57], the theory

of learning automata [53], and previous work on the foundations of reinforcement

learning [8,70,71,78,83,84].

2.1 Acting in a Complex World

An embedded system, or agent, can be seen as acting in a world, continually exe-

cuting a procedure that maps the agent's perceptual inputs to its effector outputs.

Its world, or environment, is everything that is outside the agent itself, possibly

including other robotic agents or humans. The agent operates in a cycle, receiving

an input from the world, performing some computation, then generating an output

that affects the world. The mapping that it uses may have state or memory, allow-

ing its action at any time to depend, potentially, on the entire stream of inputs that

9

10 CHAPTER 2. FOUNDATIONS

it has received until that time. Such a mapping from an input stream to an output

stream is referred to as a behavior.

In order to study the effectiveness of particular behaviors, whether or not they

involve learning, we must model the connection between agent and world, under-

standing how an agent's actions affect its world and, hence, its own input stream.

2.1.1 Modeling an Agent's Interaction with the World

The world can be modeled as a deterministic finite automaton whose state transi-

tions depend on the actions of an agent [41]. From the agent's perspective, the world

is everything that is not itself, including other agents and processes. This model

will be extended to include non-deterministic worlds in the next section. A world

can be formally modeled as the triple (5, A, W), in which S is the set of possible

states of the world, A is the set of possible outputs from the agent to the world (or

actions that can be performed by the agent), and W is the state transition function,

mapping S x A into S. Once the world has been fixed, the agent can be modeled as

the 4-tuple (J, I,R,B) where I is the set of possible inputs from the world to the

agent, J is a mapping from 5 to J that determines which input the agent will receive

when the world is in a given state, R is the reinforcement function of the agent that

maps S into real numbers (it may also be useful to consider more limited models

in which the output of the reinforcement function is Boolean-valued), and B is the

behavior of the agent, mapping J* (streams of inputs) into A. The expressions i{t)

and a(t) will denote the input received by the agent at time t and the action taken

by the agent at time t, respectively.

The process of an agent's interaction with the world is depicted in Figure 1.

The world is in some internal state, 5, which is projected into i and r by the input

and reinforcement functions / and R. These values serve as inputs to the agent's

behavior, B, which generates an action a as output. Once per synchronous cycle

of this system, the value of a, together with the old value of world state s, is

transformed into a new value of world state s by the world's transition function W.

2.1. ACTING IN A COMPLEX WORLD 11

Figure 1: An agent's interaction with its world.

Note that if the agent does not have a simple stimulus-response behavior, but

has some internal state, then the action taken by the behavior can be a function

of both its input and its internal state. This internal state may allow the agent

to discriminate among more states of the world and, hence, to obtain higher rein-

forcement values by performing more appropriate actions. To simplify the following

discussion, actions will be conditioned only on the input, but the treatment can be

extended to the case in which the action depends on the agent's internal state as

well.

2.1.2 Inconsistent Worlds

One of the most difficult problems that a learning agent must contend with is

apparent inconsistency. A world is said to be apparently inconsistent for an agent if

it is possible that, on two different occasions in which the agent receives the same

input and generates the same action, the next states of the world differ in their

reinforcement or the world changes state in such a way that the same string of

future actions will have different reinforcement results.

12 CHAPTER 2. FOUNDATIONS

There axe many different phenomena that can account for apparent inconsis-

tency:

• The agent does not have the ability to discriminate among all world states.

If the agent's input function I is not one-to-one, which will be the case in

general, then an individual input could have arisen from many world states.

When some of those states respond differently to different actions, the world

will appear inconsistent to the agent.

• The agent has "faulty" sensors. Some percentage of the time, the world is in

a state 5, which should cause the agent to receive I(s) as input, but it appears

that the world is in some other state s', causing the agent to receive I(s') as

input instead. Along with the probability of error, the nature of the errors

must be specified: are the erroneously perceived states chosen maliciously,

or according to some distribution over the state space, or contingently upon

what was to have been the correct input?

• The agent has "faulty" effectors. Some percentage of the time, the agent

generates action a, but the world actually changes state as if the agent had

generated a different action a'. As above, both the probability and nature of

the errors must be specified.

• The world has a probabilistic transition function. In this case, the world is a

stochastic automaton whose transition function, W, actually maps S x A into

a probability distribution over S (a mapping from 5 into the interval [0,1])

that describes the probability that each of the states in S will be the next

state of the world.

Some specific cases of noise phenomena above have been studied in the formal

function-learning literature. Valiant [76] has explored a model of noise in which,

with some small probability, the entire input instance to the agent can be chosen

maliciously. This corresponds, roughly, to having simultaneous faults in sensing

and action that can be chosen in a way that is maximally bad for the learning algo-

rithm. This model is overly pessimistic and is hard to justify in practical situations.

2.1. ACTING IN A COMPLEX WORLD 13

Angluin [5] works with a model of noise in which input instances are misclassified

with some probability; that is, the output part of an input-output pair is specified

incorrectly. This is a more realistic model of noise, but is not directly applicable to

the action-learning problem under consideration here.

If the behavior of faulty sensors and effectors is not malicious, the inconsistency

they cause can be described by transforming the original world model into one in

which the set of world states, 5, is identical to the set of agent inputs, 2, and

in which the world has a probabilistic transition function. Inconsistency due to

inability to discriminate among world states can also be modeled in this way, but

such a model is correct only for the one-step transition probabilities of the system.

Reducing each of these phenomena to probabilistic world-transition functions allows

the rest of the discussion of embedded behaviors to ignore the other possible modes

of inconsistency. The remainder of this section shows how to transform worlds with

each type of inconsistency into worlds with state set I and probabilistic transition

functions.

Consider an agent, embedded in a world with deterministic transition function

W, whose effectors are faulty with probability p, so that when the intended action is

a, the actual action is v{a). This agent's situation can be described by a probabilistic

world transition function W'(s, a) that maps the value of W(s, a) to the probability

value 1 - p, the value of W(s, v{a)) to the probability value p and all other states

to probability value 0. That is,

W'(s,a)(W(s,a)) = 1 - p

W(«,a)(W(«,i/(a)) = p

The result of performing action a in state s will be W(s,a) with probability 1 -

p, and W(s,u(a)) with probability p. Figure 2 depicts this transition function.

First, a deterministic transition is made based on the action of the agent; then, a

probabilistic transition is made by the world. This model can be easily extended

to the case in which v is a mapping from actions to probability distributions over

actions. For all a' not equal to a, the value of W(s, a') is mapped to the probability

value p v(a)(a'), which is the probability, p, of an error times the probability that

14 CHAPTER 2. FOUNDATIONS

x_p^%W{s,a)

W(s, v(a))

Figure 2: Modeling faulty effectors as a probabilistic world transition function.

action a' will be executed given that the agent intended to execute the action a.

The value of W(s,a) is mapped to the probability value 1 — p + p v(a)(a), which

is the probability that there is no error, plus the probability that the error actually

maps back to the correct action.

Faulty input sensors are somewhat more difficult to model. Let the agent's

sensors be faulty with probability p, yielding a value I{y{s)) rather than I(s). We

can construct a new model with a probabilistic world-transition function in which

the states of the world are those that the agent thinks it is in. The model can be

most simply viewed if the world makes more than one probabilistic transition, as

shown in Figure 3. If it appears that the world is in state 5, then with probability

ps, it actually is, and the first transition is to the same state. The rest of the

probability mass is distributed over the other states in the inverse image of s under

v, i/-1(s), causing a transition to some world state s' with probability ps>. Next,

there is a transition to a new state on the basis of the agent's action according to

the original transition function W. Finally, with probability p, the world makes a

transition to the state i/(W(s',a)), allowing for the chance that this result will be

misperceived on the next tick. In Figure 4, the diagram of Figure 3 is converted

into a more standard form, in which the agent performs an action, and then the

world makes a probabilistic transition. This construction can also be extended to

the cases in which u(s) is a probability distribution over S and in which the initial

world-transition function is probabilistic.

2.1. ACTING IN A COMPLEX WORLD 15

P*^ v(W(s,a))

P^*v(W(s',a))

agent's
perspective

real world
state

real world
state

agent's
perspective

Figure 3: Modeling faulty sensors with multiple probabilistic transitions.

16 CHAPTER 2. FOUNDATIONS

ß W(s,a)
P.(l-P)

P.P
v(W(s,a))

P.P
v(W(s',a))

PAI-P)
1i W(s',a)

Figure 4: Modeling faulty sensors as a probabilistic world transition function.

We can construct an approximate model of an agent's inability to discriminate

among world states by creating a new model of the world in which the elements

of J are the states, standing for equivalence classes of the states in the old model.

Let {si, ...,s„} be the inverse image of i under i". There is a probabilistic transition

to each of the Sj, based on the probability, pj, that the world is in state Sj given

that the agent received the input i. From each of these states, the world makes

a transition on the basis of the agent's action, a, to the state W(sj,a), which is

finally mapped back down to the new state space by the function I. This process is

depicted in Figure 5 and the resulting transition function is shown in Figure 6. The

new transition function gives a correct 1-step model of the transition probabilities,

but will not generate the same distribution of sequences of two or more states.

In the construction for faulty sensors, it is necessary to evaluate the probability

that the world is in some state Sk, given that it appears to the agent to be in another

state s. This probability depends on the unconditional probability that the world

is in the state sfc, as well as the unconditional probability that the world appears

to be in the state s. These unconditional probabilities depend, in the general case,

on the behavior that the agent is executing, so the construction cannot be carried

out before the behavior is fixed. A similar problem exists for the case of lack of

2.1. ACTING INA COMPLEX WORLD 17

{*!/(*) =
I(W(sJta))

new state
space

old state
space

old state
space

new state
space

Figure 5: Modeling inability to discriminate among worlds.

{*!/(*) = /}

I(W(spa))

Figure 6: Modeling inability to discriminate among worlds as a probabilistic world
transition function.

18 CHAPTER 2. FOUNDATIONS

discrimination: it is necessary to evaluate the probability that the world is in each

of the individual states in the inverse image of input i under I given that the agent

received input i. These probabilities also depend on the behavior that is being

executed by the agent. This leads to a very complex optimization problem that is,

in its general form, beyond the scope of this work.

This dissertation will mainly address learning in worlds that are globally consis-

tent for the learning agent. A world is globally consistent for an agent if and only if

for all inputs i € 1 and actions a € A, the expected value of the reinforcement given

i and a is constant. Global consistency allows for variations in the result of perform-

ing an action in a situation, as long as the expected, or average, result is the same.

It simply requires that there not be variations in the world that are undetectable by

the agent and that affect its choice of action. Important hidden state in the world

can cause such variations; methods for learning to act in such worlds are discussed

in Chapter 8. If the transformation described above has been carried out so that

the sets I and S are the same, the requirement for global consistency is tantamount

to requiring that the resulting world be a Markov decision process with stationary

transition and output probabilities [35]. In addition, the following discussion will

assume that the world is consistent over changes in the agent's behavior.

2.1.3 Learning Behaviors

The problem of programming an agent to behave correctly in a world is to choose

some behavior B, given that the rest of the parameters of the agent and world are

fixed. If the programmer does not know everything about the world, or if he wishes

the agent he is designing to be able to operate in a variety of different worlds, he

must program an agent that will learn to behave correctly. That is, he must find

a behavior B' that, through changing parts of its internal state on the basis of its

perceptual stream, eventually converges to some behavior B" that is appropriate for

the world that gave rise to its perceptions. Of course, to say that a program learns

is just to take a particular perspective on a program with internal state. A behavior

with state can be seen as "learning" if parts of its state eventually converge to some

2.1. ACTING INA COMPLEX WORLD 19

Figure 7: Decomposition of a learning behavior.

fixed or slowly-varying values. The behavior that results from those parameters

having been fixed in that way can be called the "learned behavior."1

A learning behavior is an algorithm that learns an appropriate behavior for an

agent in a world. It is itself a behavior, mapping elements of I to elements of A,

but it requires the additional input r, which designates the reinforcement value of

the world state for the agent. A learning behavior consists of three parts: an initial

state s0, an update function u, and an evaluation function e.2 At any moment, the

internal state, s, encodes whatever information the learner has chosen to save about

its interactions with the world. The update function maps an internal state of the

learner, an input, an action, and a reinforcement value into a new internal state,

adjusting the current state based on the reinforcement resulting from performing

that action in that input situation. The evaluation function maps an internal state

1In general, it is very difficult to formally differentiate between processes to which we would apply
the natural language term "perception" and those to which we would apply the term "learning." In
common usage, "perception" tends to refer to gaining information that is specific, transient, or at a
low level of abstraction, whereas "learning" tends to refer to more general information that is true
over longer time spans. This issue is addressed in more detail in a paper comparing different views
of the nature of knowledge [34].

2From this point on, the variable s will refer to an internal state of the learning behavior. Because
we have assumed the transformations described in the previous section, it is no longer important to
name the different states of the world.

20 CHAPTER 2. FOUNDATIONS

s := sO
loop

i := input
a := e(s,i)
output a
r := reinforcement
s := u(«,i,a,r)

end loop

Figure 8: General algorithm for learning behaviors.

and an input into an action, choosing the action that seems most useful for the agent

in that situation, based on the information about the world stored in the internal

state. Recall that an action can be useful for an agent either because it has a high

reinforcement value or because the agent knows little about its outcome. Figure 7

shows a schematic view of the internal structure of a learning behavior. The register

s has initial value s0 and can be thought of as programming the evaluation function

e to act as a particular action map. The update function, it, updates the value of

s on each clock tick.

A general algorithm for learning behaviors, based on these three components, is

shown in Figure 8. The internal state is initialized to s0, and then the algorithm

loops forever. An input is read from the world and the evaluation function is

applied to the internal state and the input, resulting in an action, which is then

output. At this point, the world makes a transition to a new state. The program

next determines the reinforcement associated with the new world state, uses that

information, together with the last input and action, to update the internal state,

and then goes back to the top of its loop. Formulating learning behaviors in terms

of s0, c, and u facilitates building experimental frameworks that allow testing of

different learning behaviors in a wide variety of real and simulated worlds.

2.2. PERFORMANCE CRITERIA 21

2.2 Performance Criteria

In order to compare algorithms for learning behaviors, we must fix the criteria on

which they are to be judged. There are three major considerations: correctness,

convergence, and time-space complexity. First, we must determine the correct be-

havior for an agent in a domain. Then we can measure to what degree a learned

behavior approximates the correct behavior and the speed, in terms of the number

of interactions with the world, with which it converges. We must also be concerned

with the amount of time and space needed for computing the update and evaluation

functions and with the size of the internal state of the algorithm.

2.2.1 Correctness

When shall we say that a behavior is correct for an agent in an environment?

There are many possible answers that will lead to different learning algorithms and

analyses. An important quantity is the expected reinforcement that the agent will

receive in the next instant, given that the current input is i(t) and the current action

is a(i), which can be expressed as

er(i(t),a(t)) = E(R(i(t -f 1)) | i(t),a(t))

= £ WWW), «(0XO-

It is the sum, over all possible next world states, of the probability that the world

will make a transition to that state times its reinforcement value. This formulation

assumes that the inputs directly correspond to the states of the world and that

W is a probabilistic transition function. If the world is globally consistent for the

agent, the process is Markov and the times are irrelevant in the above definition,

allowing it to be restated as

er(i,a) = Y,R(i')W(h")(i')-
t'€T

One of the simplest criteria is that a behavior is correct if, at each step, it

performs the action that is expected to cause the highest reinforcement value to be

22 CHAPTER 2. FOUNDATIONS

received on the next step. A correct behavior, in this case, is one that generates

actions that are optimal under the following definition:

Vt € l,a e A. Opt(i.a) <-> Va' € A. er(i,a) > er(t',a') .

Optimal behavior is defined as a relation on inputs and actions rather than as a

function, because there may be many actions that are equally good for a given

input. However, it can be made into a function by breaking ties arbitrarily. This

is a local criterion that may cause the agent to sacrifice future reinforcement for

immediately attainable current reinforcement.

The concept of expected reinforcement can be made more global by considering

the total expected reinforcement for a finite future interval, or horizon, given that

an action was taken in a particular input situation. This is often termed the value

of an action, and it is computed with respect to a particular behavior (because the

value of the next action taken depends crucially on how the agent will behave after

that). In the following, expected reinforcement is computed under the assumption

that the agent will act according to the optimal policy the rest of the time. The

expected reinforcement, with horizon k, of doing action a in input situation i at

time t is defined as

erk(i(t),a(t)) = £(£i2(i(* + j)) I i(t),a(t),Vh < k. Optk_h(i(t + h),a(t + h))) .

This expression can be simplified to a recursive, time-independent formulation, in

which the Ar-step value of an action in a state is just the one-step value of the action

in the state plus the expected k—1 -step value of the optimal action for horizon ib -1

in the following state:

erk(i,t) = er(i,a)+ £ ^i.aXOer^^Opt^^O) .
t'€X

This definition is recursively dependent on the definition of optimality k steps into

the future, Opt^:

Vi € 2, a 6 A. Opt^(i,a) *-> Va' € A. erk(i,a) > erk(i,a') .

2.2. PERFORMANCE CRITERIA 23

The values of erx and Optx are just er and Opt given above. The fc-step value of

action a in situation i at time t, erk(i, a), can be computed by dynamic program-

ming [12]. First, the Optx relation is computed; this allows the er2 function to be

calculated for all i and a. Proceeding for k steps will generate the value for erk.

Because of the assumption that the world is Markov, these values are not dependent

on the time. However, if k is large, the computational expense of this method is

prohibitive.

Another way to define global optimality is to consider an infinite sum of future

reinforcement values in which near term values are weighted more heavily than

values to be received in the distant future. This is referred to as a discounted

sum, depending on the parameter j to specify the rate of discounting. Expected

discounted reinforcement at time t is defined as

er7(t(<),a(0) = Ei^-'R^t + j)) | i(t),a(t),Vh > 0. 0pt7(i(< + h),a(t + h))) .
3=1

Properties of the exponential allow us to reduce this expression to

er(i(t), a(t)) + yer^(i(t + 1), a(t + 1)) ,

which can be expressed independent of time as

er7(t, a) = cr(i, a) + 7 £ W'(i, a)(i')er^i', 0pt7(i')) •
i'ex

The related definition of 7-discounted optimality is given by

V» € l,a € A. 0pt7(t',a) «-» W € A. er7(i,a) > cr7(t,a
/) .

For a given value of 7 and a proposed definition of 0pt7, er7 can be found by solving

a system of equations, one for each possible instantiation of its arguments. A dy-

namic programming method called policy iteration [57] can be used in conjunction

with that solution method to adjust policy 0pt7 until it is truly the optimal behav-

ior. This definition of optimality is more widely used than finite-horizon optimality

because its exponential form makes it more computationally tractable. It is also an

intuitively satisfying model, with slowly diminishing importance attached to events

in the distant future.

24 CHAPTER 2. FOUNDATIONS

Figure 9: A sample deterministic world. The numbers represent the immediate
reinforcement values that the agent will receive when it is in each of the states. The
only choice of action is in state A.

As an illustration of these different measures of optimality, consider the world

depicted in Figure 9. In state A, the agent has a choice as to whether to go right or

left; in all other states the world transition is the same no matter what the agent

does. In the left loop, the only reinforcement comes at the last state before state

A, but it has value 6. In the right loop, each state has reinforcement value 1. Thus,

the average reinforcement is higher around the left loop, but it comes sooner around

the right loop. The agent must decide what action to take in state A. Different

definitions of optimality lead to different choices of optimal action.

Under the local definition of optimality, we have er(A, L) = 0 and er (A, R) = 1.

The expected return of going left is 0 and of going right is 1, so the optimal action

would be to go right.

Using the finite-horizon definition of optimality, which action is optimal depends

on the horizon. For very short horizons, it is clearly better to go right. When the

horizon, k, is 5, it becomes better to go left. A general rule for optimal behavior is

that when in state A, if the horizon is 5 or more, go left, otherwise go right. Figure

10 shows a plot of the values of going left (solid line) and going right (dashed line)

initially, assuming that all choices are made optimally thereafter. We can see that

going right is initially best, but it is dominated by going left for all k > 5.

2.2. PERFORMANCE CRITERIA 25

er

Figure 10: Plot of expected return against horizon k. Solid line indicates strategy
of going left first, then behaving optimally. Dashed line indicates strategy of going
right first, then behaving optimally.

Figure 11: Plot of expected return against discount factor 7. Solid line indicates
strategy of always going left. Dashed line indicates strategy of always going right.

26 CHAPTER 2. FOUNDATIONS

Finally, we can consider discounted expected value. Figure 11 shows a plot of

the values of the strategies of always going left at state A (solid line) and always

going right at state A (dashed line) plotted as a function of 7. When there is a great

deal of discounting (7 is small), it is best to go right because the reward happens

sooner. As 7 increases, going left becomes better, and at approximately 7 = 0.915,

going left dominates going right.

Using a global optimality criterion can require agents to learn that chains of

actions will result in states with high reinforcement value. In such situations, the

agent takes actions not because they directly result in good states, but because they

result in states that are closer to the states with high payoff. One way to design

learning behaviors that attempt to achieve these difficult kinds of global optimality

is to divide the problem into two parts: transducing the global reinforcement signal

into a local reinforcement signal and learning to perform the locally best action.

The global reinforcement signal is the stream of values of R(i(t)) that come from

the environment. The optimal local reinforcement signal, R(i(t)), can be denned

as R(i(t)) + 7er7(i(t), Opt7(i(t)). It is the value of the state i(t) assuming that the

agent acts optimally. As shown by Sutton [70], this signal can be approximated

by the value of the state i(t) given that the agent follows the policy it is currently

executing. Sutton's adaptive heuristic critic (AHC) algorithm, an instance of the

general class of temporal difference methods, provides a way of learning to generate

the local reinforcement signal from the global reinforcement signal in such a way

that, if combined with a correct local learning algorithm, it will converge to the

true optimal local reinforcement values [70,71]. A complication introduced by this

method is that, from the local behavior-learner's point of view, the world is not

stationary. This is because it takes time for the AHC algorithm to converge and

because changes in the behavior cause changes in the values of states and therefore

in the local reinforcement function. This and related methods will be explored

further in Chapter 9.

The following discussion will be in terms of some definition of the optimality of

an action for a situation, Opt(t, a), which can be defined in any of the three ways

2.2. PERFORMANCE CRITERIA 27

above, or in some novel way that is more appropriate for the domain in which a

particular agent is working.

2.2.2 Convergence

Correctness is a binary criterion: either a behavior is or is not correct for its world.

Since correctness requires that the behavior perform the optimal actions from the

outset, it is unlikely that any "learning" behavior will ever be correct. Using a

definition of correctness as a reference, however, it is possible to develop other

measures of how close particular behaviors come to the optimal behavior. This

section will consider two different classes of methods for characterizing how good

or useful a behavior is in terms of its relation to the optimal behavior.

Classical Convergence Measures

Early work in the theory of machine learning was largely concerned with learning

in the limit [13,27]. A behavior converges to the optimal behavior in the limit if

there is some time after which every action taken by the behavior is the same as

the action that would have been taken by the optimal behavior.

Work in learning-automata theory has relaxed the requirements of learning in the

limit by applying different definitions of probabilistic convergence to the sequence of

internal states of a learning automaton. Following Narendra and Thathachar [53],

the definitions are presented here. A learning automaton is said to be expedient if

Um£[M(n)]<M0 ,

where M(n) is the average penalty (they are trying to minimize "penalty" rather

than maximize "reinforcement"—merely a terminological difference) for the internal

state at time step n and M0 is M(n) for the pure-chance automaton that selects

each action randomly with a uniform distribution. A learning automaton is said to

be optimal if

nlim£[M(n)] = c, ,

28 CHAPTER 2. FOUNDATIONS

where Q = mirii{ci} and c,- is the expected penalty of executing action i. A learning

automaton is said to be e-optimal if

lim E[M(n)] < c, + e
It—+00

can be obtained for any arbitrary e > 0 by a proper choice of the parameters of the

automaton. Finally, a learning automaton is said to be absolutely expedient if

E[M(n + 1) | s(n)] < M(n)

for all legal internal states of the algorithm s(n) and for all possible sets {c,}(t =

1,2,...,r) (under the assumption that environments with all expected penalties

equal are excluded).

An important recent theoretical development is a model of Boolean-function

learning algorithms that are probably approximately correct (PAC) [5,76], that is,

that have a high probability of converging to a function that closely approximates

the optimal function. The correctness of a function is measured with respect to a

fixed probability distribution on the input instances—a function is said to approx-

imate another function to degree e if the probability that they will disagree on any

instance chosen according to the given probability distribution is less than e. This

model requires that there be a fixed distribution over the input instances and that

each input to the algorithm be drawn according to that distribution.

For an agent to act effectively in the world, its inputs must provide some infor-

mation about the state that the world is in. In general, when the agent performs an

action it will bring about a change in the state of the world and, hence, a change in

the information the agent receives about the world. Thus, it will be very unlikely

that such an agent's inputs could be modeled as being drawn from a fixed distribu-

tion, making PAC-convergence an inappropriate model for autonomous agents.

In addition, the PAC-learning model is distribution-independent—it seeks to

make statements about the performance of algorithms no matter how the input

instances are distributed. As Buntine has pointed out [14], its predictions are often

overly conservative for situations in which there is a priori information about the

distribution of the input instances, or even in which certain properties of the actual

sample, such as how many distinct elements it contains, are known.

2.2. PERFORMANCE CRITERIA 29

Measuring Error over an Agent's Lifetime

None of the classical convergence measures take into account the behavior of the

agent during the period in which it converges. Instead, they make what is, for an

agent embedded in the world, an artificial distinction between a learning phase and

an acting phase. Autonomous agents that have extended run times will be expected

to learn for their entire lifetime. Because they may not encounter certain parts or

aspects of their environments until arbitrarily late in the run, it is inappropriate to

require all mistakes to be made before some fixed deadline.

Another way of characterizing the performance of a function-learning algorithm

is to count the divergences it makes from the optimal function. Littlestone [37] has

investigated this model extensively, characterizing the optimal number of 'mistakes'

for a Boolean-function learner and presenting algorithms that perform very well,

under this measure, on certain classes of Boolean functions. This model is intuitively

pleasing, making no restrictive division into learning and acting phases, but it is not

presented as being suited to noisy or inconsistent domains. However, by assimilating

the inconsistency of the domain into the definition of the target function, as in the

requirement for optimal behavior, Opt, we can make use of mistake bounds in

inconsistent domains. A behavior is said to make an avoidable mistake if, given

some input instance i, it generates action a and Opt(i, a) does not hold; that is,

there was some other action that would have had a higher expected reinforcement.

Avoidable mistake bounds take into account the fact that many mistakes cannot

be avoided by an agent with limited sensory abilities and unreliable effectors. How-

ever, this measure is not entirely appropriate, because every non-optimal choice of

action is considered to be a mistake of the same magnitude. The expected error of

an action a given an input i, err(a, i), is denned to be

err(a, i) = er(a', i) — er(a, i) ,

in which a' is any action such that opt(a', i). The expected error associated with

an optimal action is 0; for a non-optimal action, it is just the decrease in expected

reinforcement due to having executed that action rather than an optimal one. The

error of a behavior, either in the limit, or for runs of finite length, can be measured

30 CHAPTER 2. FOUNDATIONS

by summing the errors of the actions it generates. This value, referred to in the

statistics literature as the regret of a strategy [12], represents the expected amount

of reinforcement lost due to executing this behavior rather than an optimal one.

This is an appropriate performance metric for agents embedded in inconsistent

environments because it measures expected loss of reinforcement, which is precisely

what we would like to minimize in our agents.

In many situations, the optimal behavior is unknown or difficult to compute,

which makes it difficult to calculate the error of a given behavior. It is still possi-

ble to use this measure to compare two different behaviors for the same agent and

environment. The expected reinforcement for an algorithm over some time period

can be estimated by running it several times and averaging the resulting total rein-

forcements. Because expectations are additive, the difference between the expected

errors of two algorithms is the same as the difference between their expected total

reinforcement values. Thus, the difference between average reinforcements is a valid

measure of a behavior's correctness that is independent of the internal architecture

of the algorithm and that can be used to compare results across a wide variety of

techniques.

2.2.3 Time and Space Complexity

Autonomous agents must operate in the real world, continually receiving inputs

from and performing actions on their environments. Because the world changes

dynamically, an autonomous agent must be reactive—always aware of and reacting

to changes in its environment. To ensure reactivity, an agent must operate in real-

time; that is, its sense-compute-act cycle must keep pace with the unfolding of

important events in the environment. The exact constraints on the reaction time of

an agent are often difficult to articulate, but it is clear that, in general, unbounded

computation must never take place.

A convenient way to guarantee real-time performance is to require that the

behavior spend only a constant amount of time, referred to as a 'tick,' generating

an action in response to each input. If the behavior is a learning behavior, the

learning process must also spend only a constant amount of time on each input

2.2. PERFORMANCE CRITERIA 31

instance. There are two strategies for designing such a learning system: incremental

and batch.

An incremental system processes each new data set or learning instance as it

arrives as input. The processing must be efficient enough that the system is always

ready for new data when it arrives. If new relevant data can arrive every tick,

the learning algorithm must spend only one constant tick's worth of time on each

instance. The requirement for incrementality can, theoretically, be relaxed to yield a

batch system, in which a number of learning instances are collected, then processed

for many ticks. As long as the learning system adheres to the tick discipline, this

process need not interfere with the reactiveness of the rest of the system. Working

in batch mode may limit the usefulness of the learning system to some degree,

however, because the system will be working with old data that may not reflect the

current situation and it will force the data that arrive during the computation phase

to be ignored. When using this method, the input data must be sampled with care,

in order to avoid statistical distributions of inputs that do not reflect those of the

external world.

An algorithm can be said to be strictly incremental3 if it uses a bounded amount

of time and space throughout its entire lifetime. This is in contrast with such

approaches as Kibler and Aha's instance-based learning [1], which is incremental

in that it processes one instance at a time, but is not strictly incremental because

instances are stored in a memory whose size may increase without bound. For an

incremental system that processes one instance per tick to perform in real time, the

system must be strictly incremental.

By definition, the amount of time a strictly incremental behavior spends on each

input does not vary as a function of the number of inputs that have been received.

It will, however, depend on the size of the input and the output, but that is fixed at

design time. This allows the programmer to know how long each tick of the learning

behavior will take to compute on the available hardware and to compare that rate

with the pace of events in the world.

sThis terminology was suggested by R. Sutton.

32 CHAPTER 2. FOUNDATIONS

Any formalization of the interaction between an agent and its world will depend

on the rate of the interaction; behaviors that work at different rates will essentially

be working in different environments. The expected values of optimal behaviors

for different reaction rates will be quite different. In general, up to some minimum

value, the faster an agent can interact with the world, the better (otherwise the

agent does not have time to avert impending bad events), so we should strive for the

most efficient algorithms possible, though a slow algorithm with better convergence

properties might be preferable to a fast algorithm that is far from optimal.

Complex agents, such as mobile robots with a wide variety of sensors and ef-

fectors, will have a huge number of possible inputs and outputs. If algorithms for

these agents are to be practical, they must have time and space complexity that

is at worst polynomial in the number of input bits, lg(| J |), and the number of

output bits, lg(| A |), rather than the number of inputs and outputs. As we shall

see in Section 4.6, this will only be achievable, in general, by limiting the class of

behaviors that can be learned by the agent.

2.3 Related Foundational Work

The problem of learning the structure of a finite-state automaton from examples

has been studied by many theoreticians, including Moore [51], Gold [28] and, more

recently, Rivest and Schapire [56]. This is a very difficult problem that has only

been studied in the case of deterministic automata. If the entire structure of the

world can be learned, it is conceptually straightforward to compute the optimal

behavior. It is important to note, however, that learning an action-map that max-

imizes reinforcement is likely to be much less complex than learning the world's

transition function.

Watkins [78] presents a clear discussion of different types of optimality from an

operations-research perspective and characterizes possible algorithms for learning

optimal behavior from delayed rewards. Sutton [70,71] shows how to divide the

problem of learning from delayed reinforcement into the problems of locally optimal

behavior learning and secondary reinforcement-signal learning. The implications

2.3. RELATED FOUNDATION AL WORK 33

of these ideas for learning from delayed reinforcement will be explored further in

Chapter 9.

Williams has done important work on the foundations of reinforcement learning,

which is considerably different than the framework provided in this chapter [83,84].

He has developed a general form for expressing reinforcement algorithms in which

a wide variety of existing reinforcement learning algorithms may be described. In

addition, he has shown that the algorithms expressed in this form are performing

a gradient ascent search, in which the average update of the internal parameters of

the algorithm is in the direction of steepest ascent for expected reinforcement.

Chapter 3

Previous Approaches

The problem of learning from reinforcement has been studied by a variety of re-

searchers: statisticians studying the "two-armed bandit" problem, psychologists

working on mathematical learning theory, learning-automata theorists, and AI re-

searchers. This chapter explores the differing frameworks in which these groups have

studied reinforcement learning and presents a few important algorithms and results

from each area. It presents previous approaches only to the simple reinforcement-

learning scenario in which all reinforcement is instantaneous (the goal is to optimize

local, immediate reinforcement) and the action maps to be learned are pure func-

tions. As these assumptions are relaxed, later in the dissertation, other relevant

work pertaining to the more complex situations will be discussed.

3.1 Bandit Problems

The reinforcement learning problem is addressed within the statistics community

as the "two-armed bandit" problem: given a machine with two levers that pays

some amount of money each time a lever is pulled, develop a strategy that gains the

maximum payoff over time by choosing which lever to pull based on the previous

experience of lever-pulling and payoffs. Among the early results was that the "stick

with a winner but switch on a loser" strategy is expedient (better than random),

but not optimal [12].

35

36 CHAPTER 3. PREVIOUS APPROACHES

Algorithm 1 (BANDIT) The initial state, s0, consists of 8 components: c, an array
with two integer elements, and integers d and I. Initially, c contains zeros, d = — 1,
and 1 = 0.

u(s,a,r) = ifd=—lthen
c[a] := c[a] + 1

e(s) = if d= —\ then
if c[0] — c[l] > k then begin

d := 0; return 0; end
else if c[l] — c[0] > k then begin

d:= 1; return 1; end
else if I = 0 then begin

I := 1; retfurn 1; end
eke 5e<7tn

/ := 0; return 0; en<2
eise return d

Figure 12: Formal description of the BANDIT algorithm.

Most of the technical results in this area make very strict assumptions about the

a priori information the player has about the probabilistic models underlying the

payoff processes of the two arms. These results may be useful in restricted situations,

but are not applicable to the general problem of building learning agents.

There has been some consideration, however, of the minimal case, in which it

is assumed that the events of arm-pulling are independent, that they pay off either

nothing or a fixed amount, that the probability of each arm paying off remains

constant for the entire game, and that the world will choose the probabilities in

the way that is worst for the player. It has been shown [12] that the best possible

strategy for such a domain has regret proportional to (1 — 7)-1^2 for discounting

factor 7 and to n1/2 for finite horizon n.

An example algorithm satisfying these requirements is formally described in

Figure 12.1 The algorithm alternates between the two arms, keeping track of the

1There is no input argument, i, to the update and evaluation functions. This algorithm, as well
as most of the others in the first part of the chapter, makes a choice about what action to perform

3.2. LEARNING AUTOMATA 37

number of successes of each. When the number of successes of one arm exceeds the

number of successes of the other by a number k, it chooses the winning arm forever

into the future. The array c contains counts of the number of successes of each arm;

d encodes the decision about future actions; if it has value — 1, the decision has not

yet been made; / encodes the last action taken so that the algorithm can alternate

between actions in the pre-decision phase. If reinforcement is to be optimized over

a fixed horizon n, k should be chosen to be n1/2. If reinforcement with discounting

factor 7 is to be optimized, k should be chosen to be (1 — 7)"1/2. This is a simple

algorithm with an upper bound on regret of (1 - 7)_1/2(1 + £) in the discounted

case or (1 - n"1)~(n_1)n1/2(l + £) in the finite horizon case. This value is itself

bounded above by nJ/2(e +1/2). In both cases, the upper bound on regret is within

a constant factor of optimal. However, as we will see in Section 4.4, this algorithm

is outperformed by many others in empirical tests.

3.2 Learning Automata

Another closely related field is that of learning automata. The phrase "learning

automata" means, in this case, automata that learn to act in the world, as opposed

to automata that learn the state-transition structures of other automata (as in

Moore [51]).

3.2.1 Early Work

The first work in this area took place in the Soviet Union. An example of early

learning-automaton work is the Tsetlin automaton, designed by M. L. Tsetlin [75].

The input set of the automaton is {0,1}, with 1 corresponding to the case when

the agent receives reinforcement and 0 corresponding to the case when it does not.

As in the BANDIT algorithm, there is no input corresponding to z, the information

about the state of the world. The automaton has two possible actions, or outputs:

0 and 1. The operation of the Tsetlin automaton is described in Figure 13.

for every future time step, with only reinforcement as input.

38 CHAPTER 3. PREVIOUS APPROACHES

Algorithm 2 (TSETLIN)

a=0 a=l

£0«—O«—0"«0«—O O—K)»"0—K)—xSy
1 2 3 N-l N 2N 2N-1 N+3 N+2 N+l

r=l

a-0 a=l

o—>o—►o»»» o—»cr^ ID«—O"»o*—o«—o
1 2 3 N-l N*2N 2N-1 N+3 N+2 N+l

r = 0

T/ie initial state can be any of the states, but would most reasonably be chosen to
be state N or state 2N. All of the states on the left half of the graph evaluate to
action 0 and on the right half of the graph to action 1. The state update operation
consists of making one of the labeled transitions: when reinforcement has value 1,
a transition to the left is taken if the action was 0 and to the right if the action was
1; when the reinforcement has value 0, a right transition is taken if the action was
0 and a left transition if the action was 1. Zero reinforcement values move the state
toward the center and positive reinforcement values move the state toward the end
corresponding to the action that was taken.

Figure 13: The Tsetlin automaton

3.2. LEARNING AUTOMATA ' 39

The Tsetlin automaton is parametrizable by the number, JV, of states between

the center state and the ends of the chains going to the right and left. It can be

shown that, if one of the actions has success probability greater than .5, then, as the

value JV approaches infinity, the average reinforcement approaches the maximum

success probability [53].

There are many other similar learning automata, some with better convergence

properties than this one. The BANDIT algorithm can also be easily modeled as a

finite-state machine.

3.2.2 Probability-Vector Approaches

As it is difficult to conceive of complex algorithms in terms of finite-state transition

diagrams, the learning automata community moved to a new model, in which the

internal state of the learning algorithm is a vector of non-negative numbers that

sum to 1. The length of the vector corresponds to the number of possible actions of

the agent. The agent chooses an action probabilistically, with the probability that

it chooses the nth action equal to the nth element of the state vector. The problem,

then, is one of updating the values in the state vector depending on the most recent

action and its outcome.

These and similar, related models were also independently developed by the

mathematical psychology community [15] as models for human and animal learning.

The most common of these approaches, called the linear reward-penalty algo-

rithm, is shown in Figure 14. Whenever an action is chosen and succeeds, the

probability of performing that action is increased in proportion to 1 minus its cur-

rent probability; when an action is chosen and fails, the probability of performing

the other action is increased in proportion to its current probability. The parame-

ters a and b govern the amount of adjustment upon success and failure, respectively.

An important specialization is the linear reward-inaction algorithm, also described

in Figure 14, in which no adjustment is made to the probability vector when rein-

forcement value 0 is received.

40 CHAPTER 3. PREVIOUS APPROACHES

Algorithm 3 (LRP) The initial state, s0, consists of pi and p?, two positive real
numbers such that pi + pz = 1.

u(s,a, r) = if a = 0 then
ifr = 0 then

Po := (1 - b)po
else po:= po + api

else
ifr = 0 then

Po-=Po + bpi
else po := (1 - a)po

pt := 1 - po
(\ _ JO w^1 probability po

with probability p\

Algorithm 4 (LRI) Any instance of Algorithm LRP in which b = 0.

Figure 14: The linear reward-penalty (LRP) and linear reward-inaction (LRI) algo-
rithms.

The linear reward-penalty algorithm has asymptotic performance that is better

than random (that is, it is expedient), but it is not optimal. It has no absorbing

states, so it always executes the wrong action with some non-zero probability. The

linear reward-inaction algorithm, on the other hand, has the absorbing states [1,0]

and [0,1], because a probability is only ever increased if the corresponding action

is taken and it succeeds. Once one of the probabilities goes to 0, that action will

never be taken, so its probability can never be increased. The linear reward-inaction

algorithm is e-optimal; that is, the parameter a can be chosen in order to make the

probability of converging to the wrong absorbing state as small as desired. As the

value of a is decreased, the probability of converging to the wrong state is decreased;

however, the rate of convergence is also decreased. Theoreticians have been unable

to derive a general formula that describes the probability of convergence to the

wrong state as a function of a and the initial value of p\. This would be necessary

in order to choose a to optimize reinforcement for runs of a certain length or with

a certain discounting factor, as we did with k in the BANDIT algorithm above.

3.2. LEARNING AUTOMATA 41

Algorithm 5 (TS) The initial state, s0, consists of the following 6 components: po
and pi, which are positive real numbers such that Po + Pi = 1, and RQ = Ri = Z0 =
Z1=0.

u(s,a,r) = d0 := RQ/Z0; ^ := R\ßx

if a = 0 then begin
if d0 > di then

Po := po + X(do - di)pi
else po:= po + X(d0 - di)pl
Pi := 1-po
iZo:=i2o + r
Z0 := Z0 + 1

end else begin
if di > d0 then

Pi-=Pi + A(di - do)po
else pi := pi + X(di - do)p\
Po ■= 1 - Pi
Rx :=R!+r
Zx := Zj + 1

end
f \ _ JO to»<Ä probability po

\\ with probability pj

where 0 < X < 1 is a positive constant.

Figure 15: The TS algorithm

In addition to these linear approaches, a wide range of non-linear approaches

have been proposed. One of the most promising is Thathachar and Sastry's method

[74]. It is slightly divergent in form from the previous algorithms in that it keeps

more state than simply the vector p of action probabilities. In addition, there is

a vector d of estimates of the expected reinforcements of executing each action.

Reinforcement values are assumed to be real values in the interval [0,1]. A simple

two-action version of this algorithm is shown in Figure 15.

The Rj are the summed reinforcement values for each action, the Zj are the

number of times each action has been tried, and the dj are the average reinforcement

42 CHAPTER 3. PREVIOUS APPROACHES

values for each action. The adjustment to the probability vector depends on the

values of the dj rather than on the direct results of recent actions. This introduces

a damping effect, because as long as, for instance, do > di, po will be increased,

even if it has a few negative-reinforcement results during that time.

The TS algorithm converges much faster than the linear algorithms LRP and

LRI. One of the reasons may be that it naturally takes big steps in the parameter

space when the actions are well differentiated (the difference between d0 and dx is

large) and small steps when they are not. It has been shown that, for any stationary

random environment, there is some value of A such that pi(n) —> 1 in probability2 as

n —> oo, where pi(n) is the probability of executing the action that has the highest

expected reinforcement [74].

3.3 Reinforcement-Comparison Methods

One drawback of most of the algorithms that have been presented so far is that

reinforcement values of 0 and 1 cause the same sized adjustment to the internal

state independent of the expected reinforcement value. Sutton [70] addressed this

problem with a new class of algorithms, called reinforcement-comparison methods.

These methods work by estimating the expected reinforcement, then adjusting the

internal parameters of the algorithm proportional to the difference between the

actual and estimated reinforcement values. Thus, in an environment that tends to

generate reinforcement value 1 quite frequently, receiving the value 1 will cause less

adjustment that will be caused by receiving the value 0.

An instance of the reward-comparison method, taken from Sutton's thesis [70], is

shown in Figure 16. The internal state consists of the "weight" w, which is initialized

to 0, and the predicted expected reinforcement, p, which is initialized to the first

reinforcement value received. The output, e(s), has value 1 or 0 depending on the

values of w and the random variable v. The addition of the random value causes

the algorithm to "experiment" by occasionally performing actions that it would not

2According to Narendra and Thathachar [53], "The sequence {Xn} of random variables converges
in probability to the random variable X if for every € > 0, lim„_oo Pr{| Xn — X \> e} = 0."

3.4. ASSOCIATIVE METHODS 43

Algorithm 6 (RC) The internal state, s0) consists of the values w = 0 and p,
which will be initialized to the first reinforcement value received.

u(s,a,r)= w := w + a(r -p)(a - 1/2)
P := P + ß{r - p)

0 e(s)= I 1 ifw + v>
\ 0 otherwise

where a > 0, 0 < ß < 1, and i/ is a normally distributed random variable of mean
0 and standard deviation 6y.

Figure 16: A reward-comparison (RC) algorithm.

otherwise have taken. The state component w is incremented by a value with three

terms. The first term, a, is a constant that represents the learning rate. The next

term, r — p, represents the difference between the actual reinforcement received and

the predicted reinforcement, p. This serves to normalize the reinforcement values:

the absolute value of the reinforcement signal is not as important as its value relative

to the average reinforcement that the agent has been receiving. The third term in

the update function for w is a - 1/2; it has constant absolute value and the sign

is used to encode which action was taken. The predicted reinforcement, p, is a

weighted running average of the reinforcement values that have been received.

3.4 Associative Methods

The algorithms presented so far have addressed the case of reinforcement learning in

environments that present only reinforcement values as input to the agent. A more

general setting of the problem, called associative reinforcement learning, requires

the agent to learn the best action for each of a possibly large number of input

states. This section will describe three general approaches for converting simple

reinforcement-learning algorithms to work in associative environments. The first

is a simple copying strategy, and the second two are instances of a large class of

44 CHAPTER 3. PREVIOUS APPROACHES

Algorithm 7 (COPY) Let (s0, u, e) be a learning behavior that has only reinforce-
ment as input. We can construct a new learning behavior (s'0, u', t') with 2M inputs
as follows:

s'0 = array [1..2MJ of s0

u'(s', i,a, r) = u(s'[i],a,r)

e'(s',i) = e(s'[i],a)

Figure 17: Constructing an associative algorithm by making copies of a non-
associative algorithm.

associative reinforcement-learning methods developed by researchers working in the

connectionist learning paradigm. Other approaches not described here include those

of Minsky [48] and Widrow, Gupta, and Maitra [81]. Barto [9] gives a good overview

of connectionist learning for control, including learning from reinforcement.

3.4.1 Copying

The simplest method for constructing an associative reinforcement-learner, shown

in Figure 17, consists of making a copy of the state of the no-input version of the

algorithm for each possible input and training each copy separately. It requires 2M

(the number of different input states) times the storage of the original algorithm.

In addition to being very computationally complex, the copying method does

not allow for any generalization between input instances: that is, the agent cannot

take advantage of the intuition that "similar" situations require "similar" responses.

3.4.2 Linear Associators

In his thesis [70], Sutton gives methods for converting standard reinforcement-

learning algorithms to work in an associative setting in a way that allows an agent

to learn efficiently and to generalize across input states. He uses a version of the

Widrow-Hoff or Adaline [82] weight-update algorithm to associate different internal

state values with different input situations. This approach is illustrated by the LARC

3.4. ASSOCIATIVE METHODS 45

Algorithm 8 (LARC) The input is represented as an M-dimensional vector i. The
internal state, sQ, consists of two M-dimensional vectors, v and w.

u(s,i,a,r) = let p := v • t
for j = 1 to M do begin

Wj := Wj + a(r - p)(a - l/2)ij
Vj := VJ + ß{r - p)ij

end

e(si)= I 1 tfw-i + i/X)
I 0 otherwise

where a > 0, 0 < ß < 1, and u is a normally distributed random variable of mean
0 and standard deviation 6y.

Figure 18: The linear-associator reinforcement-comparison (LARC) algorithm.

is an (linear-associator reinforcement-comparison) algorithm shown in Figure 18. It i

extension of the RC algorithm to work in environments with multiple input states.

The inputs to the algorithm are represented as M-dimensional vectors The out-

put, e(s,i), has value 1 or 0 depending on the inner product of the weight vector

w and i and the value of the random variable v. The updating of the vector w is

somewhat complicated: each component is incremented by a value with four terms.

The first term, a, is a constant that represents the learning rate. The next term,

r — p, represents the difference between the actual reinforcement received and the

predicted reinforcement, p. The predicted reinforcement, p, is generated using a

standard linear associator that learns to associate input vectors with reinforcement

values by setting the weights in vector v. The third term in the update function

for w is a - 1/2: it has constant absolute value and the sign is used to encode

which action was taken. The final term is »,-, which causes the j'th component of

the weight vector to be adjusted in proportion to the jth value of the input.

46 CHAPTER 3. PREVIOUS APPROACHES

Another instance of the linear-associator approach is Barto and Anandan's as-

sociative reward-penalty (ARP) algorithm [7]. It is a hybrid of the linear reward-

penalty and linear-associator methods and was shown (under a number of restric-

tions, including the restriction that the set of input vectors be linearly independent)

to be e-optimal.

The linear-associator approach can be applied to any of the learning algorithms

whose internal state consists of one or a small number of independently-interpretable

numbers for each input. If the input set is encoded by bit strings, the linear-

associator approach can achieve an exponential improvement in space over the copy

approach, because the size of the state of the linear-associator is proportional to the

number of input bits rather than to the number of inputs. This algorithm works well

on simple problems, but algorithms of this type are incapable of learning functions

that are not linearly separable [47].

3.4.3 Error Backpropagation

To remedy the limitations of the linear-associator approach, multi-layer connection-

ist learning methods have been adapted to reinforcement learning. Anderson [3],

Werbos [79], and Munro [52], among others, have used error back-propagation

methods3 with hidden units in order to allow reinforcement-learning systems to

learn more complex action mappings. Williams [85] presents an analysis of the use

of backpropagation in associative reinforcement-learning systems. He shows that a

class of reinforcement-learning algorithms that use back-propagation (an instance

of which is given below) perform gradient ascent search in the direction of maximal

expected reinforcement. This technique is effective and allows considerably more

generalization across input states, but it requires many more presentations of the

data in order for the internal units to converge to the features that they need to

detect in order to compute the overall function correctly. Barto and Jordan [10]

demonstrate the use of a multi-layer version of the associative reward-penalty algo-

rithm to learn non-linear functions. This method is argued to be more biologically

3A good description of error back-propagation for supervised learning is given by Rumelhart,
Hinton, and Williams [58].

3.5. GENETIC ALGORITHMS 47

plausible than back-propagation, but requires considerably more presentations of

the data.

As an example of the application of error backpropagation methods to rein-

forcement learning, Anderson's method [3] will be examined in more detail. It uses

two networks: one for learning to predict reinforcement and one for learning which

action to take. The weights in the action network are updated in proportion to

the difference between actual and predicted reinforcement, making this an instance

of the reinforcement-comparison method (discussed in Section 3.3 above). Each of

the networks has two layers, with all of the hidden units connected to all of the

inputs and all of the inputs and hidden units connected to the outputs. The system

was designed to work in worlds with delayed reinforcement (which are discussed

at greater length in Chapter 9), but it is easily simplified to work in our simpler

domain.

The BP algorithm is shown in Figures 19 and 20 and is explained in detail by

Anderson [3]. The presentation here is simplified in a number of respects, however.

In this version, there is no use of momentum and the term (a — 1/2) is used to

indicate the choice of action rather than the more complex expression used by

Anderson. Also, Anderson uses a different distribution for the random variable v.

This method is theoretically able to learn very complex functions, but tends to

require many training instances before it converges. The time and space complexity

for this algorithm is O(MH), where M is the number of input bits and H is the

number of hidden units. Also, this method is somewhat less robust than the more

standard version of error back-propagation that learns from I/O pairs, because the

error signal generated by the reinforcement-learning system is not always correct.

3.5 Genetic Algorithms

Genetic algorithms constitute a considerably different approach to the design and

implementation of reinforcement-learning systems. This section will briefly describe

the general approach and point to some representative applications of these methods

48 CHAPTER 3. PREVIOUS APPROACHES

Algorithm 9 (BP) The input is represented as an M + 1-dimensional vector i, in
which the last element contains a constant value. The internal state, s0, consists of

WEH '' Weights of the hidden units in the evaluation network, an H by M + 1
element array initialized to small random values.

WEO • Weights of the output unit in the evaluation network, an H + M + 1 element
array initialized to small random values.

WAH ' Weights of the hidden units in the action network, an H by M +1 element
array initialized to small random values.

WAO - Weights of the output unit in the action network, an H + M + 1 element
array initialized to small random values.

In addition, the algorithm makes use of the following local variables

OEH
: Outputs of the hidden units in the evaluation network, an H element array.

OAH ' Outputs of the hidden units in the action network, an H element array.

p : Output of the output unit in the evaluation network.

Figure 19: An application of error backpropagation to reinforcement learning: data
structures.

3.5. GENETIC ALGORITHMS 49

Algorithm 9 (BP) (continued)

u(s, i, a, r) = for j = 1 to H do
0EH[J]:=f(i-WEH[j])

p := WEo ' concat(i, OEH)

for j = 1 to M + 1 do
WEO{]\ := WE0[j] + ß(r-p) i\j]

for j = 1 to H do
WE0[j + M + 1] := WE0\j + M + l] + ß(r-p) 0EH[j]

for j = 1 to H do begin

d:=(r- p) sign(WEoL7 + M + 1]) 0EH[j] (1 - 0EH[j})
fork = ltoM + ldo

WE„[j,k]:=ßhdi[k]
end
for j = 1 to M + 1 do

WAO[j] := WA0[j\ + p (r - p) {a - 1/2) i\j]
for j = 1 to H do

WAO[j + M + 1] := WAO[j + M + l] + p{r-p)(a- 1/2) 0A„[j]
for j = 1 to H do begin

d:=(r- p) (a - 1/2) sign(W^0[j + M + 1]) 0AH\j] (1 - 0AH[j))
fork = \ to M + 1 do

WAH[j,k] := phdi[k]
end

e(s, i) = for j = 1 to H do
0AH[j] := F(i • WA„\j})

1 */ (WAO • concat(i, 0AH)) + v > 0
0 otherwise I

where ß,ßh,p,ph > 0, f(x) = 1/(1 + e~x), and v is a normally distributed random
variable of mean 0 and standard deviation 6y.

Figure 20: An application of error-backpropagation to reinforcement learning: up-
date and evaluation functions

50 CHAPTER 3. PREVIOUS APPROACHES

to reinforcement learning. An excellent introduction to and survey of this field is

given in Goldberg's book [29].

In their purest form, genetic algorithms (GA's) can be seen as a technique for

solving optimization problems in which the elements of the solution space are coded

as binary strings and in which there is a scalar objective function that can be used to

compute the "fitness" of the solution represented by any string. The GA maintains

a "population" of strings, which are initially chosen randomly. The fitness of each

member of the population is calculated. Those with low fitness values are eliminated

and members with high fitness values are reproduced in order to keep the population

at a constant size. After the reproduction phase, operators are applied to introduce

variation in the population. Common operators are crossover and mutation. In

crossover, two population elements are chosen, at random, as operands. They are

recombined by randomly choosing an index into the string and making two new

strings, one that consists of the first part of the first string and the second part of

the second string and one that consists of the first part of the second string and the

second part of the first string. Mutation simply changes bits in population elements,

with very low probability.

A more complex type of GA is the classifier system [33]. Developed by Holland,

it consists of a population of production rules, which are encoded as strings. The

rules can be executed to implement an action function that maps external inputs

to external actions. When the rules chain forward to cause an external action,

a reinforcement value is received from the world. Holland developed a method,

called the Bucket Brigade, for propagating reinforcement back along the chain of

production rules that caused the action. This method is an instance of the class of

temporal difference methods, which will be discussed further in Chapter 9. As a set

of rules is run, each rule comes to have a relatively stable value which is used as its

fitness. The standard genetic operations of reproduction, crossover, mutation, etc.,

are used to generate new populations of rules from old ones.

Although classifier systems are reinforcement-learners, they are not well-suited

for use in embedded systems. As with most production systems, there is no bound

3.6. EXTENSIONS TO THE MODEL 51

on the number of rule-firings that will be required to generate an output in response

to an input, preventing the algorithm's operation from being real-time.

Grefenstette [30] has applied GA methods directly to the time-constrained prob-

lem of learning action strategies from reinforcement. The elements of the population

of his system are symbolic representations of action maps. The fitness of an element

is determined by executing it in the world for a number of ticks and measuring the

average reinforcement. Action maps that perform well are reproduced and recom-

bined to generate new action maps.

The GA approach works well on problems that can be effectively coded as syn-

tactic objects in which the interpretation of individual elements is relatively context-

independent and for which there are useful recombination operators. It is not yet

clear what classes of problems can be so specified. An interesting extension of the

research carried out in this dissertation would be to implement genetic algorithms

for the problems considered and compare their performance with that of the algo-

rithms tested herein.

3.6 Extensions to the Model

The algorithms of the previous sections have been presented in their simplest possi-

ble forms, with only Boolean reinforcement as input and with two possible actions.

It is a relatively simple matter to extend all of the algorithms except RC, LARC, and

BP to the case of multiple actions. Because the details differ for each one, however,

they shall be omitted from this discussion. The algorithms that choose an action by

comparing an internal value plus noise to a threshold are more difficult to generalize

in this way.

The rest of this section will briefly detail extensions of these algorithms to work

in domains with non-Boolean and nonstationary reinforcement.

52 CHAPTER 3. PREVIOUS APPROACHES

3.6.1 Non-Boolean reinforcement

Algorithms BANDIT and TSETLIN have no obvious extensions to the case of non-

Boolean reinforcement.

The learning-automata community considers three models of reinforcement: P,

Q, and S. The P-model of reinforcement is the Boolean-reinforcement model we

have already explored. In the Q-model, reinforcement is one of a finite number

of possible values that are known ahead of time. These reinforcement values can

always be scaled into values in the interval [0,1]. Finally, the 5-model allows real-

valued reinforcement in the interval [0,1]. The notions of expediency and optimality

can be extended to apply to the Q- and 5-models.

Algorithms designed for P-model environments, such as the LRP and LRJ algo-

rithms, can be adjusted to work in Q- and 5-models as follows. Let A,i0 be the

change made to action-probability i when reinforcement 0 is received and let Atii

be the change made when reinforcement value 1 is received. We can define, for the

new models, A,ir, the change made when reinforcement value r is received as

A,> = rAi.i + (1 - r)A,,0 ,

a simple linear combination of the updates for the old reinforcement cases [53].

Algorithm TS was designed to work in an 5-model of reinforcement and can be

used in such environments without change. Algorithm RC, as well as the associative

reinforcement-comparison algorithms LARC and BP, work in the more general case

of real-valued reinforcement that is not necessarily scaled to fall in the interval [0,1].

3.6.2 Nonstationary environments

A world is nonstationary if er(i, a) (the expected reinforcement of performing action

a in input situation t) varies over time. It is very difficult to prove formal results

about the performance of learning algorithms in nonstationary environments, but

several observations can be made about which algorithms are likely to perform

better in such environments. For instance, algorithms with absorbing states, such

as BANDIT and LJU, are inappropriate for nonstationary environments: if the world

3.7. CONCLUSIONS 53

changes after the algorithm has converged, it will never sample the other actions and

adjust its behavior to the changed environment. On the other hand, algorithms that

are less effective in stationary environments, such as TSETLIN and LRP, continue to

sample all of the actions and will adapt to changes in the environment.

3.7 Conclusions

A number of effective reinforcement-learning algorithms have been developed by

different research communities. The work in this dissertation seeks to extend and

improve upon the previous work by developing more effective learning methods

and by finding approaches to associative reinforcement learning that are capable of

learning a broader class of functions than the linear approaches can, but doing so

more space-efficiently than the copy method and with fewer input instances than

are required by the error backpropagation method. In addition, this dissertation

will extend previous work on the problem of learning from delayed reinforcement.

Chapter 4

Interval Estimation Method

The interval estimation method is a simple statistical algorithm for reinforcement

learning. It is a logical extension of the statistical algorithms presented in the

previous chapter. By allowing the state of the algorithm to encode not only esti-

mates of the relative merits of the various actions, but also the degree of confidence

that we have in those estimates, the interval estimation method builds on previous

approaches by making it easier to control the tradeoff between acting to gain infor-

mation and acting to gain reinforcement in a careful way. The interval estimation

algorithm performs well on a variety of tasks and its basis in standard statistical

methods makes it an illustrative example for formal analysis.

This chapter presents the algorithm, together with an estimate of its expected

error and experimental comparisons with many of the algorithms of Chapter 3.

Next, it explores ways of extending the basic algorithm to deal with the more gen-

eral learning models presented in Section 3.6. Finally, this chapter discusses the

computational complexity of the interval-estimation algorithm and argues that it,

along with other existing reinforcement-learning algorithms to which the linear-

association or backpropagation methods cannot be directly applied, is too compu-

tationally expensive for use in embedded systems.

55

56 CHAPTER 4. INTERVAL ESTIMATION METHOD

4.1 Description of the Algorithm

The interval estimation method can be applied in a wide variety of environments;

the simplest form will be presented first, and extensions to the basic algorithm will

be described in Section 4.5. The basic interval estimation algorithm is formally

described in Figure 21. The state consists of simple statistics: for each action

a, na and xa are the number of times that the action has been executed and the

number of those times that have resulted in reinforcement value 1, respectively. The

evaluation function uses these statistics to compute, for each action, a confidence

interval1 on the underlying probability, pa, of receiving reinforcement value 1 given

that action a is executed. If n is the number of trials and x the number of successes

arising from a series of Bernoulli trials 2 with probability p, the upper bound of a

100(1 — a) percent confidence interval for p can be approximated by u6(x, n). 3 The

evaluation function generates the action with the highest upper bound on expected

reinforcement.

Initially, each of the actions will have an upper bound of 1, and action 0 will

be chosen arbitrarily. As more trials take place, the bounds will tighten. The in-

terval estimation method balances acting to gain information with acting to gain

reinforcement by taking advantage of the fact that there are two reasons that the

upper bound for an action might be high: because there is little information about

that action, causing the confidence interval to be large or because there is informa-

tion that the action is good, causing the whole confidence interval to be high. The

parameter za/2 is the value that will be exceeded by the value of a standard normal

variable with probability a/2. 4 It controls the size of the confidence intervals and,

thus, the relative weights given to acting to gain information and acting to gain

reinforcement. As a increases, more instances of reinforcement value 0 are required

1A 100(1 — a) percent confidence interval for a quantity is a range of values that, with probability
1 — a, contains that quantity.

2Bernoulli trials are a series of statistically independent events with binary outcomes that are
generated by some fixed underlying probability.

3This is a somewhat more complex form than usual, designed to give good results for small values
ofn[36].

4Tables of this relationship can be found in most probability and statistics texts [36].

4.1. DESCRIPTION OF THE ALGORITHM 57

Algorithm 10 (IE) The initial state, s0, consists of the integer variables x0, n0,
x\, and n\, each initialized to 0.

u(s,a,r) = if a = 0 then begin
xQ := x0 + r

no := no + 1
end else begin

Xi := X\ + r
rij := ni + 1

end
e(s) = if ub(xo,rio) > ub(xi,rii) then

return 0
else

return 1

where

u , s+4?+5^te)(i-f)+%
ub(x,n) =

and zQ/2 > 0.

Figure 21: The interval-estimation (IE) algorithm.

58 CHAPTER 4. INTERVAL ESTIMATION METHOD

aOs aOt aOb als alt alb

(14 / 19) .88194
(81 / 138) .66567
(85 / 147) .65507

(0 / 1) .79346
(0 / 2) .65763
(0 / 3) .56151

Figure 22: A sample run with po — .55, pi = .45, and zQ/2 = 1.96. In this case, it
converges very quickly.

to drive down the upper bound of the confidence intervals, causing more weight to

be placed on acting to gain information. By the DeMoivre-Laplace theorem [36],

these bounds will converge, in the limit, to the true underlying probability values,

and, hence, if each action is continually attempted, this algorithm will converge to

a function that satisfies Opt.

In order to provide intuition about the workings of this algorithm, Figures 22

and 23 show output from two sample runs in a simulated environment in which

the actions a0 and a\ succeed with probabilities po and p\. The listings show the

number of success and trials of do (the columns headed aOs and aOt), the upper

bound on the confidence interval of po (the column headed aOb) and the same for

ai and pi (columns headed als, alt, and alb). These statistics are just shown at

interesting points during the run of the algorithm. In Figure 22, the first few trials

of ax fail, causing the estimate of pi to be quite low; it will be executed a few more

times, once the upper bound for po is driven near .56. The run shown in Figure

23 is somewhat more characteristic. The two actions have similar probabilities of

success, so it takes a long time for one to establish dominance.

4.2 Analysis

In order to analytically compare this algorithm with other algorithms, we would like

to know the expected error of executing this algorithm in an environment specified

by the action-success probabilities po and pi. This section informally derives an

approximate expression for the expected error in terms of po, pi, and z0/2-

4.2. ANALYSIS 59

aOs aOt aOb als alt alb

(4 / 7) .84178 (1 / 3) .79235
(39 / 7S) .62931 (22 / 45) .62996
(226 / 394) .62150 (22 / 46) .61863
(358 / 631) .60549 (31 / 59) .64734
(963 / 1789) .56128 (52 / 111) .56080
(5548 / 9888) .57084 (52 / 112) .55630

Figure 23: Another sample run with po = .55, pi = .45, and za/2 = 1.96. This time,
the two actions battle for a long time, but üQ is clearly winning after 10,000 trials.

Regular Error

For concreteness, let us assume that po > Pi- An error occurs every time a,\ is

executed, and we expect it to be executed a number of times that is sufficient to

drive the upper bound of p\ below the actual value of po- We can compute this

expected number of errors by setting the expected value of the upper bound on px

equal to po and solving for ni. The expected value of the upper bound on pi is

approximately5 the upper bound with the number of successes set to nipi. This

allows us to solve the equation ub{p,iPi, ni) = po for n1? yielding

2a/aPo(l - Po)

(Po ~ Pi)2

As po and pi grow close, na goes to infinity. This is as it should be—it becomes

infinitely hard to tell which of the two actions is better. We can simplify this

expression further by abstracting away from the actual values of po and pi and

considering their difference, 6, instead. For probabilities with a fixed difference, ni

is maximized by setting pj to .5 and po to .5 + 8. Making this simplification, we can

bound Ti\ above by

462 '
This is an approximate upper bound on the expected number of errors that will be

made on a run of infinite length. The amount of error can be obtained simply by

5This is only an approximation because ni occurs inside a square-root, which does not commute
with the expectation operator.

60 CHAPTER 4. INTERVAL ESTIMATION METHOD

error

Figure 24: Expected regular error on an infinite run as a function of 6, with zQ/2
1.96.

multiplying by £, the magnitude of the error, yielding

46 '

which is plotted as a function of 6 in Figure 24.

This result is somewhat disturbing, because the amount of error on an infinitely

long run can be made arbitrarily large by making 6 arbitrarily small. However, it is

possible to bound the amount of error on a finite run of length m. The maximum

expected number of errors that could be made on such a run is m/2 (when the two

probabilities are equal, we expect to perform the actions equal numbers of times).

The number of errors is monotonically decreasing in 6, so we can easily find the

largest value of 6 that could cause this many errors by solving the equation

m

462

for 8, getting -pr-- Thus, the maximum expected regular error on a run of length

m would be
Zy/in

4.2. ANALYSIS 61

aOs aOt aOb als alt alb

(0 / 2) .65763

(0 / 3) .56151
(1 / 4) .69936

(16 / 34) .63264

(4 / 8) .78479
(67 / 137) .57191
(70 / 146) .55997
(78 / 176) .51701

Figure 25: A sample run with po = .55, pi = .45, and za/2 = 1.96. The first action
almost gets stuck.

obtained by multiplying the maximum number of errors, m/2, by the maximum

magnitude of the error. This maximum regular error is O^m1^2), which means that

the interval estimation algorithm, like the BANDIT algorithm, performs within a

constant factor of optimal when the environment is as hostile as possible.

Error Due to Sticking

The analysis of the previous section was all carried out under the assumption that

the action a0 would be executed an infinite number of times during an infinite run.

Unfortunately, this is not always the case—it is possible for a0 to get stuck below aj

in the following way. If there is a statistically unlikely series of trials of aQ that cause

the upper bound on po to go below the actual value of pj, then it is very likely that

do will never be executed again. When this happens, we shall say that do is stuck.

A consequence of CLQ being stuck is that errors will be made for the remainder of the

run. The process of sticking is illustrated by two sample runs. In Figure 25, there

is an early series of failures for a0, causing ai to be dominant. However, because

the upper bound on po was not driven below p\, the upper bound on p\ eventually

goes down far enough to cause more trials of a0, which bring its upper bound back

up. The run shown in Figure 26 is a case of permanent sticking. After 0 successes

in 5 trials, the upper bound on the confidence interval for po is less than pl5 causing

CL\ to be executed for the remainder of the run.

By assuming that once ao becomes stuck below a.\ it never becomes unstuck, we

can bound expected error due to sticking on a run in which a0 would be executed

62 CHAPTER 4. INTERVAL ESTIMATION METHOD

aOs aOt aOb als alt alb

(o / 2) .65763 (0 / 1) .79346
(o / 3) .56151 (11 / 24) .64925
(o / 4) .48990 (57 / 121) .55953
(o / 5) .43449 (108 / 253) .48847
(o / 5) .43449 (132 / 300) .49658

Figure 26: A sample run with po = -55, pi = .45, and za/2 = 1.96. Here, the first
action really does get stuck below the second.

T times, if unstuck, by

T

£]Pr(u&(:ro,tf) first goes below pi at time <)(T - t)(po - pi) .
t=i

It is the sum, over all time steps t on which a0 is executed, of the probability that

a0 first gets stuck at time t times the number of time steps that remain, (T - t),

times the magnitude of the error, (po - Pi). By solving for x0, we can transform the
constraint that ub(x0,t) < pj into

x0 < tpi - Za/2\/tpi(l - Pi)

Now we must compute the probability that xQ first goes below some function

f(t) at time t. The sequence of values taken on by x0 over time can be modeled as

a 0-1 random walk, with x0(t) the value taken on by the walk at time t. Figure 27

depicts the function / and process x0. Letting k = [/(<)J, the probability that x0

first goes below / at time t is the product of the probabilities that x0(t) = k and

that x0 never goes below / before time t. The first probability is simply

(9*S<i -*)-»

We can approximate the probability that x0 never goes below / before time t by

substituting for / the line 7 that goes through the point {t, k) with slope /'(<). This

line is approximately tangent to f(t). The probability that x0 never goes below /

before time t can be approximated by constructing a new random walk problem as

4.2. ANALYSIS 63

fit) l(t)

Figure 27: The random walk xQ(t) and function f(t).

shown in Figure 28. The origin is the point {t, k) and the coordinates run backward

in each direction. The process x^ is a 0-1 random walk with probability k/t of getting

a 1, and the line / is the same as before. The probability that a 0-1 random walk

ever hits a line through the origin is approximately p/m where p is the probability

of getting a 1 in the random walk and m is the slope of the line [38]. Thus, the

probability that x% never hits the line is 1 - k/(tf'(t)).

So, our final (approximate) answer for the probability that x0 first goes below

*Pi - zytPi(l - Pi) at time t (called sp(t) for sticking probability at time t) is

sp(t) = 1 -
t(Pi ~ |za/2vWl-Pi)A)/ \k.

Pko(l-PoY-k ,

where k = [tpx - z^y/tp^l - Pl)\.

64 CHAPTER 4. INTERVAL ESTIMATION METHOD

0

Figure 28: New random walk in inverted coordinate system.

Total Error

An approximate upper bound on the total expected error on a run of length T can

finally be expressed as the sum of the regular and sticking error:

Zo/2

4(A)-Pi)
+ j>p(0(tf-0(Pb-Pi) •

*=i

The sticking error is summed to T', the expected number of times a0 will be exe-

cuted, which is T — 4, "^ y There has not yet been any discussion of appropriate

values for z0/2 to take on. It determines the size of the confidence interval and,

therefore, the number of trials it takes to drive an upper bound below a certain

value. Thus, regular error increases as za/2 increases and the interval gets larger.

As za/2 increases, the height of /(<) decreases, making it less likely that x0
w"l go

below. Thus, error due to sticking decreases as za/2 increases. This tradeoff is illus-

trated in Figure 29, which plots regular error and error due to sticking as functions

Of *a/2-

If we had any o prior; expectations (and had some idea how to usefully approxi-

mate the monstrous form for expected error as a closed form) about the underlying

values of po and p\, we could choose zaji to minimize expected error.

4.3. EMPIRICAL RESULTS 65

error

2 4 6 8 10

Figure 29: Expected regular error and sticking error plotted as a function of zQ/2.

4.3 Empirical Results

The approximations of the previous section were tested by comparing predicted

results against actual results of the interval estimation algorithm in a simulated

world. The algorithm was executed for 6 ranging, in increments of .05, from .05

to .6, with pi and & equally spaced about .5 (for 6 = .1, pi = .55 and p2 = .45.)

For each value of S, 1079 runs of length 10,000 were conducted. The variable za/2

had value 1.96 throughout. Figure 30 contains a plot, for each 6, of the mean error

of the runs that did not stick, together with the predicted error. The predictions

seem to be fairly accurate for regular error. Figure 31 shows the mean error due to

sticking for each 8, along with the predicted values. This prediction is somewhat

less accurate. Nonetheless, these results are encouraging, because we can see that,

in these cases, the total expected error is quite small—less than 50 fewer instants of

reinforcement value 1 than expected from the optimal algorithm for runs of length

10,000.

66 CHAPTER 4. INTERVAL ESTIMATION METHOD

regular error

0.2 0.4 0.6 0.8

Figure 30: Regular error as a function of 6; dots indicate the mean regular error on
1079 runs of length 10,000; the curve is predicted error.

sticking error

5 Ot

40-

30-

20

10"

0.3 0.4 0.5 0.6

Figure 31: Error due to sticking as a function of 8; dots indicate the mean error
due to sticking on 1079 runs of length 10,000; the curve is predicted error.

4.4. EXPERIMENTAL COMPARISONS 67

Task Po Pi
1 .9 .1
2 .6 .4
3 .9 .8
4 .2 .1

Table 1: Parameters of test environments.

4.4 Experimental Comparisons

This section reports the results of a set of experiments designed to compare the per-

formance of the interval estimation algorithm with a number of the most promising

reinforcement-learning algorithms.

4.4.1 Algorithms and Environments

The following algorithms were compared in these experiments:

• BANDIT (described in Figure 12)

• LRP (described in Figure 14)

• LRI (described in Figure 14)

• TS (described in Figure 15)

• RC (described in Figure 16)

• IE (described in Figure 21)

Each of the algorithms was tested in four different environments. The environ-

ments generate Boolean reinforcement, with positive reinforcement resulting with

probability po after doing action aQ and with probability pi after doing action ai.

Table 1 shows the values of po and p\ for each environment.

68 CHAPTER 4. INTERVAL ESTIMATION METHOD

ALG-TASK 12 3 4
BANDIT(fc) 1 12 10 10
LRP (a) .60 .60 .30 .40
LRI (a) .55 .1 .05 .15
TS(A) .30 .20 .20 .35
RC (a) .40 .30 .15 .50

IE (za/2) 3.0 2.0 3.0 2.0

Table 2: Best parameter value for each algorithm in each environment.

4.4.2 Parameter Tuning

Each of the algorithms has a single parameter that can be chosen to make the

algorithm more or less conservative;6 the best choice of value for these parameters

typically depends on the length of the run, because it is more important to insure

that an absorbing algorithm converges to the correct action on a long run. For

each algorithm and environment, a series of 100 trials of length 1000 were run with

different values of the parameter. Table 2 shows the best parameter value found for

each algorithm and environment pair.

Although these experiments are illuminating, in actual applications we will typ-

ically want to apply these algorithms to situations in which the underlying proba-

bilities are not known or there is not enough time to make many runs with different

parameter values. In such situations, an algorithm that performs well over a wide

range of problems with the same parameter value is to be preferred over one that

performs well when the parameter is chosen exactly appropriately for the problem,

but poorly otherwise. As we can see in Table 2, the interval estimation algorithm

operates at its best in all of these problems with a z0/2 value between 2 and 3—

this roughly corresponds to using 95 or 99 percent confidence intervals, values that,

interestingly, are often used by human decision-makers.

€ Actually, RC also has parameters ß and a, but following the author [70], these parameters were
held constant at .1 and .3, respectively.

4.4. EXPERIMENTAL COMPARISONS 69

ALG-TASK 1 2 3 4

BANDIT .8982 .5856 .8892 .1888

LRP .8172 .5190 .8665 .1521

LRJ .8911 .5872 .8780 .1934
TS .8979 .5893 .8941 .1870
RC .8988 .5890 .8897 .1930

IE .9004 .5953 .8937 .1972

random .5000 .5000 .8500 .1500
optimal .9000 .6000 .9000 .2000

Table 3: Average reinforcement over 100 runs of length 1000.

4.4.3 Results

After choosing the best parameter value for each algorithm and environment, the

performance of the algorithms was compared on runs of length 1000. The perfor-

mance metric was average reinforcement per tick, averaged over the entire run. The

results are shown in Table 3. These results do not tell the entire story, however.

It is important to test for statistical significance to be relatively sure that the or-

dering of one algorithm over another did not arise by chance. Figure 32 shows, for

each task, a pictorial representation of the results of a 1-sided t-test applied to each

pair of experimental results. The graphs encode a partial order of significant dom-

inance, with solid lines representing significance at the .95 level and dashed lines

representing significance at the .85 level. We can see that the interval-estimation

algorithm dominates in nearly every task. On Task 3 its average reinforcement

value was slightly lower than that of the TS algorithm, but this difference was not

significant. The LRP algorithm is, as expected, uniformly sub-optimal, and the rest

of the algorithms perform about the same at quite a high level.

Another view of the relative performance of the algorithms is given by examining

their learning curves. A learning curve is a plot of expected reinforcement values

versus time, which shows the rate of performance improvement. Figures 33, 34, 35,

and 36 contain, for each task, the superimposed learning curves of each algorithm for

that task. Each point represents the average reinforcement received over a sequence

of 50 ticks, averaged over 100 runs of length 1000. For Tasks 1 and 2, the curves

70 CHAPTER 4. INTERVAL ESTIMATION METHOD

TASK1 TASK 2

TASK 4

LRP
LRP

Figure 32: Significant dominance partial order among algorithms for each task.

4.5. EXTENSIONS 71

er

5 10 15 20
bucket of 50 ticks

Figure 33: Learning curves for Task 1.

are hard to differentiate; the labels on the right hand sides of the graphs indicates

the average relative performance of the algorithms on the first sample of 50 ticks.

4.5 Extensions

As with the algorithms of Chapter 3, the interval estimation algorithm can be

extended to work in more complex environments. All of the extensions described

in this section have been implemented and tested in simulated environments.

4.5.1 Multiple Inputs and Actions

The interval estimation algorithm is directly generalizable to multiple actions. Statis-

tics are collected for each action and are used to construct upper bounds. The action

with the highest upper bound is chosen to be executed at each tick.

There is no specific way to tailor the interval estimation algorithm to work in

situations where there are multiple input states. The method of making a copy of

the internal state for each possible input situation can be applied to the interval

estimation algorithm, but because there is more than a single number associated

72 CHAPTER 4. INTERVAL ESTIMATION METHOD

5 10 15
bucket of 50 ticks

Figure 34: Learning curves for Task 2.

er

5 10 15
bucket of 50 ticks

20

Figure 35: Learning curves for Task 3.

4.5. EXTENSIONS 73

5 H

bucket of 50 ticks

Figure 36: Learning curves for Task 4.

with each input state, it would be difficult to apply the linear association or error

backpropagation methods.

4.5.2 Real-valued Reinforcement

Rather than thinking of choosing the action with the highest probability of succeed-

ing, we can think of choosing the action with the highest expected reinforcement.

Under this view, the interval estimation process can be applied to the expected

value of reinforcement given that the action a is executed in situation z. If the re-

inforcement for each tick is binomially distributed with parameter p, this is exactly

what is taking place in the version of the algorithm presented in Section 4.1.

Simple extensions can be made if a different probabilistic distribution underlies

the reinforcement associated with taking action. In order to handle real-valued

reinforcement, for example, we can apply the following two methods: assume the

normal distribution or use non-parametric statistics.

If the reinforcement values are normally distributed, we can use standard statis-

tical methods to construct a confidence interval for the expected value. In order to

do this, we must keep the following statistics: n, the number of trials, £ xi the sum

of the reinforcement received so far, and J^x2, the sum of squares of the individual

74 CHAPTER 4. INTERVAL ESTIMATION METHOD

reinforcement values. The upper bound of a 100(1 — a) % confidence interval for

the mean of the distribution can be computed by

nub(n, J2x^x2) = y + ta/l^-fc

where y = x/n is the sample mean,

nEs2-(E*)2

\ n(n - 1)

is the sample standard deviation, and t^L is Student's t function with n — 1 degrees

of freedom [69]. Other than using a different statistical method to compute the

upper bound of the expected reinforcement, the algorithm remains the same.

Even when the reinforcement values cannot be assumed to be normally dis-

tributed, the interval estimation algorithm can be implemented using simple non-

parametric statistics.7 In this case, it is not possible to derive an upper bound

on expected value from summary statistics, so we must keep the individual rein-

forcement values. Obviously, it is impossible to store them all, so only the data in

a sliding window are kept. The non-parametric version of the interval estimation

algorithm requires another parameter, w, that determines the size of the window

of data. The data are kept sorted by value as well as by time received. The upper

bound of a 100(1 — a) % confidence interval for the center of the underlying distri-

bution (whatever it may be) can be calculated, using the ordinary sign test [26], to

be the (n — tx)th element of the sorted data, if they are labelled, starting at 1, from

smallest to largest, where n is minimum of w and the number of instances received.

The value u is chosen to be the largest value such that

For large values of n, u can be approximated using the normal distribution.
7Non-parametric methods tend to work poorly when there are a small number of discrete values

with very different magnitudes. Practical results have been obtained in such cases by using methods
for the normal distribution with the modification that each action is performed at least a certain
fixed number of times. This prevents the sample variance from going to 0 on small samples with
identical values.

4.5. EXTENSIONS 75

4.5.3 Non-stationary environments

The basic version of the interval estimation algorithm can converge to absorbing

states and, as noted in Section 3.6.2, that makes it inappropriate for use in non-

stationary environments. One way to modify the algorithm in order to fix this

problem is to decay all of the statistics associated with a particular input value by

some value d less than, but typically near, 1, whenever that input value is received.

This decaying will have the effect that the recorded number of trials of an action

that is not being executed decreases over time, causing the confidence interval to

grow, the upper bound to increase, and the neglected action to be executed again.

If its underlying expected value has increased, that will be revealed when the action

is executed and it may come to be the dominant action.

This technique may be similarly applied when using statistical methods for

normally-distributed reinforcement values. The non-parametric method described

above is already partially suited to non-stationary environments because old data

only has a finite period of influence (of length tu) on the choices of the algorithm.

It can be made more responsive to environmental changes by occasionally dropping

a data point from the list of an action that is not being executed. This will cause

the upper bound to increase, eventually forcing the action to be executed again.

Another method of changing an algorithm to work in non-stationary environ-

ments is to choose the "wrong action" (one that would not have been chosen by the

algorithm) with probability 1/n, where n is the number of trials that have taken

place so far. As time passes, it becomes less and less likely to do an action that is

not prescribed by the current learned policy, but executing these "wrong" actions

ensures that if they have become "right" due to changes in the environment, the

algorithm will adapt. This method is more suited to situations in which environ-

mental changes are expected to be more likely to happen early in a run, rather than

later.

76 CHAPTER 4. INTERVAL ESTIMATION METHOD

4.6 Applicability of this Algorithm

The interval estimation algorithm is of theoretical interest because of its simplicity

and its direct ties to standard statistical methods. It also performs slightly better

than many proposed reinforcement-learning algorithms. However, this algorithm,

as well as other reinforcement-learning algorithms that require copies of the state for

each possible input, is fundamentally unsuitable for learning in embedded systems

because of its high computational complexity and lack of generalization.

Except for the linear-association and error-backpropagation algorithms, all of

the other algorithms we have examined require time at least proportional to the

number of possible actions, and space proportional to the product of the number of

inputs and the number of actions. As we begin to apply these algorithms to real-

world problems, their time and space requirements will make them unpractically

slow. A driving factor in the rest of this dissertation is the need for reinforcement-

learning algorithms with lower time and space complexity, ideally proportional to

the logarithms of the numbers of inputs and actions.

In addition, the interval estimation algorithm completely compartmentalizes

the information it has about individual input situations. If it learns to perform a

particular action in one input situation, that has no influence on what it will do in

similar input situations. In realistic environments, an agent cannot expect ever to

encounter all of the input situations, let alone have enough experience with each one

to learn the appropriate response. Thus, it is important to develop algorithms that

will generalize across input situations. Generalization is a dangerous thing, however;

too much generalization defeats the learning of very complex action functions.

It is possible to modify the interval-estimation algorithm in order to support

some degree of generalization across input situations. Instead of simply using the

upper bound on expected value of an action a in a situation t, it is possible, instead,

to compute a kind of average based on the results of performing action a in situations

similar to i, with "nearer" situations weighted more heavily than those farther

away. This technique requires a measure on the nearness of input situations to one

another and is no longer directly grounded in statistical theory. By addressing the

4.6. APPLICABILITY OF THIS ALGORITHM 77

generalization issue in this way, however, we increase the computation time of the

algorithm, for now it requires evaluating action a in a number of input situations.

This only adds a constant factor that depends on the number of neighbors that are

used, but it just makes a bad situation worse.

The interval-estimation method might be made both more computationally effi-

cient and able to generalize across situations by using associative methods (such as

linear association or backpropagation) to store each of the components of the state

for an input-action pair. The statistical foundations of such an approach would be

weak, potentially causing a number of problems.

It is important to note, however, that in order to find more efficient algorithms,

we must give up something. What we will be giving up is the possibility of learning

any arbitrary action mapping. In the worst case, the only way to represent a

mapping is as a complete look-up table, which is what the multiple-input version

of the interval-estimation algorithm does. There are many useful and interesting

functions that can be represented much more efficiently, and the remainder of this

work will rest on the hope and expectation that an agent can learn to act effectively

in interesting environments without needing action maps of pathological complexity.

Chapter 5

Divide and Conquer

Because we wish to reduce the complexity of learning algorithms to be proportional

to the logarithms of the numbers of inputs and outputs, it is useful to think of the

inputs and outputs as being encoded in some binary code. The problem, then, is

one of constructing a function that maps a number of input bits to a number of

output bits. If we can construct algorithms that effectively learn interesting classes

of functions with time and space complexity that is polynomial in the number of

input and output bits, we will have improved upon the previous group of algorithms.

Having decided to view the problem as one of learning a mapping from many

input bits to many output bits, we can reduce this problem to the problem of

learning a mapping from many input bits to one output bit. This chapter discusses

such a problem reduction, first describing it informally, then proving its correctness.

It concludes with an application of the reduction method to a complex learning

problem.

5.1 Boolean-Function Learners

A Boolean-function learner (BFL) is a reinforcement-learning behavior that learns

a mapping from many input bits to one output bit. It has the same input-output

structure as any of the algorithms discussed so far, but is limited to having only

two actions. We can describe a BFL with k input bits in the general form of a

79

80 CHAPTER 5. DIVIDE AND CONQUER

i BFL0

BFL,

BFL, t X

» fe.
I BFL, w

Figure 37: A cascaded learner constructed from BFL's.

learning behavior where l0,Jt is the initial state, ü* is the update function and e* is

the evaluation function.

A BFL is correct if and only if whenever it chooses an action a in situation

i, er(i,a) > er(i,-ia). That is, it always chooses the action that has the higher

expected reinforcement.

5.2 Cascade Algorithm

We can construct an algorithm that learns an action map with N output bits by

using N copies of a Boolean-function learning algorithm, one dedicated to learning

the function corresponding to each individual output bit. If we do this in the

simplest way, it will not work correctly: when the collection of BFL's generates

an output pattern that does not result in positive reinforcement, it is difficult to

know whose fault it was. Perhaps only one of the bits was "wrong." To avoid

this problem, often referred to the as "structural credit assignment" problem, we

construct a learning algorithm (as shown in Figure 37) from N cascaded BFL's. The

BFL dedicated to learning to generate the first output bit (referred to as BFL0) has

5.2. CASCADE ALGORITHM 81

Algorithm 11 (^CASCADE,)

So = array of So,Af+j where j goes from 0 to N — 1
u(s,i,a,r) = forj:=0toN — l

«M+i(*[;], conca<(t',a[0...7 - l]),a[j],r)

e(/i, i) = for j :=0 to N -1

a[j] •= c*f+i(*[y], conca<(i, a[0.. j - 1]))
return a

Figure 38: The CASCADE algorithm.

the M real input bits as input. The next one, BFL1? has the M real inputs as well

as the output of BFL0 as input. In general, BFLjt will have M + k bits of input,

corresponding to the real inputs and the outputs of the Jb lower-numbered BFL's.

Each one learns what its output bit should be, given the input situation and the

values of the output bits of the lower-numbered BFL's.

The cascade algorithm can be described as a learning behavior as shown in

Figure 38. The complexity of this algorithm can be expressed as a function of the

complexity of the component BFL's, letting 5(s0,it) be the size of the initial state

of a BFL with k inputs, T(üjt) be the time for the BFL update function on k input

bits, and T(e*) be the time for the BFL evaluation function with k input bits. For

the entire cascade algorithm with M input bits and N output bits, the size of the

state is

O(E%M+J)) ,
3=0

which reduces to

the time for an update is

and the time for an evaluation is

0(N S(SOM+N)) ;

0(NT(uM+N)) ;

0(NT(eM+N)) •

82 CHAPTER 5. DIVIDE AND CONQUER

Given efficient algorithms for implementing the BFL's, the cascade method can

construct an efficient algorithm for learning functions with any number of output

bits.1

This efficiency comes at a price, however. Even if there is no noise in the

environment, a mistake made on bit j will cause the reinforcement information for

bits 0 through j — 1 to be in error. To see this, consider the case of two output bits.

Given input instance i, bit 0 is generated to have the value 1; then, bit 1 is generated,

as a function of both i and the value of bit 0, to have the value 0. If the correct

response in this case was {1,1}, then each of the bits will be given low reinforcement

values, even though bit 0 was correct. This brings to light another requirement of

the BFLs: they must work correctly in nonstationary environments. As the higher-

numbered BFL's are in the process of converging, the lower-numbered ones will be

getting reinforcement values that are not necessarily indicative of how well they are

performing. Once the higher-numbered BFL's have converged, the lower-numbered

BFL's must be able to disregard their earlier training and learn to act correctly

given the functions that the higher-numbered BFL's are now implementing.

5.3 Correctness and Convergence

In order to show that this algorithm works, we must demonstrate two points. First,

that if the component BFL's converge to correct behavior then the behavior of

the entire construction will be correct. Second, that the component BFL's are

trained in a way that guarantees that they will converge to correct behavior. These

requirements will be referred to as correctness and convergence.

5.3.1 Correctness

This section presents a proof that the cascade construction is correct for the case

of two output bits. A similar proof can be constructed for cases with any number

of bits. Assume that the two BFL's have already converged, the first one to the

1This assumes that S(so,k), T(ük), and T(et) are all monotonically non-decreasing in ib.

5.3. CORRECTNESS AND CONVERGENCE 83

function /0, and the second to the function fx. The following formula asserts that

the function /0 is correct, given the choice of fx:

Vt. er(/o(i)l/1(f,/o(i))) > er(-./o(t)f/1(i,-i/o(i))) ; (1)

that is, that for any value of the input i, it is better for the first bit to have the

value /o(t) than its opposite. Similarly, we can assert that the function /i is correct:

Vt\ b. er(6, /,(*, b)) > er(b, -i/,(», 6)) ; (2)

that is, that for any value of input i and first bit 6 (b is the output of f0 in the

cascade), it is better that the second bit have the value fx(i, b) than its opposite.

We would like to show that the composite output of the cascade algorithm is

correct: that is, that for any input, no two-bit output has higher expected rein-

forcement than the one that is actually chosen by f0 and fx. This can be stated

formally as the following conjunction:

Vi.cr(/o(i),/,(«,/o(0)) > «■(-/o(t),/1(i,/o(i))) A (3)

Vi.cr(/o(i),/,(t,/o(i))) > er(/o(iWi(i,/o(i))) A (4)

Vi.cr(/o(i),/i(i,/o(OJ) > er(-/o(0,i/1(il/o(i))) . (5)

The first conjunct, 3, can be shown with a proof by cases. In the first case, given

input i, function fx is insensitive to its second argument: that is, /a(i, x) = /a(i, -ix).

In this case,

er(-/o(i),/i(*,/o(*))) = eK-/o(0,/i(*Wo(0)) 5 (6)

from 6 and assumption 1 we can conclude that

er(fo(i)Ji(iJo(i))) > er(-./o(i),/1(iI/o(0)) •

In the second case, function fx is sensitive to its second argument when the first

argument has value i; that is, fi(i,x) = -i/i(t,-ia:). In this case,

er(-"/o(0,/i(«\/o(0)) = er(-./o(i),-./i(»,-/o(i))) • (7)

Combining assumptions 1 and 2, we can derive

er(/o(*),/i(«\/o(0)) > er(--/o(i),-./!(.', i/o(0)) • (8)

84 CHAPTER 5. DIVIDE AND CONQUER

From 7 and 8, we have our desired conclusion, that

er(/o(t),/i(i,/o(*))) > er(-i/o(0,/i(i,/o(t))) •

The second conjunct, 4, follows directly from assumption 2.

The third conjunct, 5, also requires a proof based on the same cases used in the

proof of the first conjunct. In the first case, /a(i,x) = fi(i,->x), so

cr(-i/o(0. -*(«, /o(0)) = er(-./o(0, --/i(«, -/o(0)) • (9)

From 9 and result 8 above, we can derive

er(/o(0>/i(*\/o(»'))) > er(i/o(t),-./,(i,/o(t))) •

In the second case, fi(i,x) = ->/i(i,-ur), so

cr(-n/0(i), -»/i(t, /o(*))) = cr(i/o(i), /i(*\ ^/o(0)) •

Combining this result with assumption 1, we get the desired result, that

er(/o(«),/i(*\/o(0)) > er(-/o(0,-/i(i,/o(0)) •

Thus, we can see that local assumptions of correctness for each BFL are sufficient

to guarantee global correctness of the entire cascade algorithm.

5.3.2 Convergence

Now, we must show that the BFL's are trained in a way that justifies assumptions 1

and 2 above. It is difficult to make this argument precise without making very strong

assumptions about the BFL's and the environment. Informally, the argument is as

follows. The highest-numbered BFL (BFL;v) always gets correct reinforcement and

so converges to the correct strategy; this is because, independent of what the lower-

numbered BFL's are doing, it can learn always to make the best of a bad situation.

Once this has happened, BFL^_i will get correct reinforcement; because its internal

learning algorithm works in non-stationary environments, it will converge to behave

5.4. EXAMPLE 85

in the best way it can in light of what BFL# does (which now is correct). This

argument can be made all the way up to BFL0.

In general, the convergence process may work somewhat differently. Conver-

gence happens on an input-by-input basis, because there is no guarantee that the

whole input space will be explored during any finite prefix of a run of the agent.

Rather, an input comes in from the world and all the BFL's except BFL^r generate

their output bits. This constitutes a learning instance for BFLjv, which can gain

information about what to do in this situation. After this situation has occurred a

few times, BFLjv will converge for that input situation (including the bits generated

by the lower-numbered BFL's). As the lower-numbered BFL's begin to change their

behavior, they may generate output patterns that BFL# has never seen, requiring

BFLjv to learn what to do in that situation before the lower-numbered BFL's can

continue their learning process.

5.4 Example

As a simple illustration of the cascade reduction method, this section outlines its use,

in conjunction with the interval estimation algorithm, to solve a complex learning

problem. As a baseline for comparison, we also consider the use of the interval

estimation algorithm in conjunction with the method of adding extra copies of the

basic statistical algorithm to handle multiple actions. These two methods will be

compared in terms of computational complexity and performance on the learning

problem.

5.4.1 Complexity

If there are M input bits and N output bits, the space complexity of an instance of

the interval estimation algorithm with a copy of the basic algorithm for each input-

action pair is 0(2M+N). The cascade method requires N copies of the algorithm,

each with 1 output bit and up to M + TV — 1 input bits. The total space requirement

86 CHAPTER 5. DIVIDE AND CONQUER

for the cascade algorithm would, in this case, be 0(N2M+N), which is worse than

using the simple copying method.

The time complexity of an update operation (if indexing is ignored) is constant

for the copying method; the cascade method requires each component BFL to be

updated, using 0(N) time.

The time complexity of an evaluation using the simple copying method is 0(2^),

because each possible action must be evaluated. Using the cascade method, however,

it is 0(N)t because only 2 actions must be evaluated for each output bit.

Each cycle of a learning behavior requires one update and one evaluation: for the

copying method this requires 0(1) + 0(2^) = 0(2N) time; for the cascade method

it requires 0(N) + 0(N) = 0(N) time. Thus, the space complexity is somewhat

greater using the cascade method, but computation time is considerably shorter.

5.4.2 Performance

A moderately complex reinforcement-learning problem is that of learning to be an

n-bit adder: the learner has In input bits, representing the addends, and n output

bits, representing the result. It is given reinforcement value 1 if the output bits are

the binary sum of the first n input bits and the second n input bits, otherwise it is

given reinforcement value 0. For this experiment, a 5-bit adder problem was used;

it has fairly high complexity, with 1024 possible inputs and 32 possible outputs.

As we can see in Figure 39, which shows average reinforcement as a function

of time (data points represent averages of 100 time steps), the cascade method has

much better performance than the simple copying method. One reason for the

superior performance of the cascade method over the copy method is that, in the

cascade method, the output bits are being trained in parallel and the agent will not,

in general, have to try all (or even half) of the 2^ possible actions in each input

situation before finding the correct one. At first, it may seem that the algorithm

is somehow taking advantage of the structure of the adder problem, because the

general solution to the n-bit adder problem involves feeding intermediate results

(carries) to later parts of the computation. Upon closer examination, however, it

5.4. EXAMPLE 87

100+

er

10000 20000 30000 40000 50000 60000

trial

Figure 39: Performance of interval estimation algorithm on 5-bit adder problem
using copying method and cascade method of generating multiple outputs.

is clear that the intermediate results are simply less-significant output bits, which

are not related to the values of the carries and do not simplify the computation of

the more-significant output bits. Thus, the performance of the CASCADE algorithm

cannot be attributed to the special structure of the adder problem.

Chapter 6

Learning Boolean Functions in

fc-DNF

6.1 Background

In the previous chapter, we saw that the problem of learning an action map with

many output bits can be reduced to the problem of learning a collection of action

maps with single Boolean outputs. Such action maps can be described by formulae

in prepositional logic, in which the atoms are input bits. The formula (i'x A i2) V ->z0

describes an action map that performs action 1 whenever input bits 1 and 2 are on

or input bit 0 is off and performs action 0 otherwise.

As we saw in Section 4.6, any learning algorithm that is to be more efficient

than methods like interval estimation will only be able to learn a restricted class of

action maps. When there are only two possible actions, we can describe the class

of action maps that are learnable by an algorithm in terms of syntactic restrictions

on the corresponding class of prepositional formulae. This method is widely used

in the formal literature on concept learning.

A restriction that has proved useful to the concept-learning community is to

the class of functions that can be expressed as prepositional formulae in fc-DNF. A

formula is said to be in disjunctive normal form (DNF) if it is syntactically organized

into a disjunction of purely conjunctive terms; there is a simple algorithmic method

89

90 CHAPTER 6. LEARNING BOOLEAN FUNCTIONS IN K-DNF

for converting any formula into DNF [21]. A formula is in the class Jb-DNF if and

only if its representation in DNF contains only conjunctive terms of length k or

less. There is no restriction on the number of conjunctive terms—just their length.

Whenever k is less than the number of atoms in the domain, the class Jfc-DNF is a

restriction on the class of functions.

The next section presents Valiant's algorithm for learning functions in Jfc-DNF

from input-output pairs. The following sections describe algorithms for learning

action maps in fc-DNF from reinforcement and present the results of an empiri-

cal comparison of their performance. For each reinforcement-learning algorithm,

the inputs are bit-vectors of length M, plus a distinguished reinforcement bit; the

outputs are single bits.

6.2 Learning fc-DNF from Input-Output Pairs

Valiant was one of the first to consider the restriction to learning functions ex-

pressible in fc-DNF [76,77]. He developed an algorithm, shown below, for learning

functions in fc-DNF from input-output pairs, which actually only uses the input-

output pairs with output 0.

Algorithm 12 (VALIANT) Let T be initialized to the set of conjunctive terms of

length k over the set of atoms (corresponding to the input bits) and their negations,

and let L be the number of learning instances required to learn the concept to the

desired accuracy.1

for i := 1 to L do begin

v := randomly drawn negative instance

T := T— any term that is satisfied by v

end

return T

'This choice is not relevant to our reinforcement-learning scenario—the details are described in
Valiant's papers [76,77].

6.3. COMBINING THE LARC AND VALIANT ALGORITHMS 91

Algorithm 13 (LARCKDNF) Let FT be a function mapping an M-bit input vector
into a 2kl fc)-bit vector, each of whose elements is the result of evaluating an element
of T on the raw input vector.
Let So of this algorithm be the initial state, so, of an instance of the LARC algorithm
with 2k(k) bits. The update function will be u of LARC, with the input Fr{i), and,
similarly, the evaluation will be e of LARC, with the input Fr(i).

Figure 40: The linear-association reinforcement-comparison algorithm for learning
functions in fc-DNF from reinforcement.

The VALIANT algorithm returns the set of terms remaining in T, with the inter-

pretation that their disjunction is the concept that was learned by the algorithm.

This method simply examines a fixed number of negative instances and removes any

term from T that would have caused one of the negative instances to be satisfied.2

6.3 Combining the LARC and VALIANT Algorithms

Given our interest in restricted classes of functions, we can construct a hybrid

algorithm for learning action maps in fc-DNF. It hinges on the simple observation

that any such function is a linear combination of terms in the set T, where T is

the set of conjunctive terms of length k over the set of atoms (corresponding to the

input bits) and their negations. It is possible to take the original M-bit input signal

and transduce it to a wider signal that is the result of evaluating each member of T

on the original inputs. We can use this new signal as input to a linear-associative

reinforcement learning algorithm, such as Sutton's LARC algorithm (described in

Figure 18. If there are M input bits, the set T has size f2^) because we are

choosing from the set of input bits and their negations. However, we can eliminate

all elements that contain both an atom and its negation, yielding a set of size 2k (\j.

The combined algorithm, called LARCKDNF, is described formally in Figure 40.

2Valiant's presentation of the algorithm defines T to be the set of conjunctive terms of length
k or less over the set of atoms and their negations; however, because any term of length less than
k can be represented as a disjunction of terms of length k, we use a smaller set T for simplicity in
exposition and slightly more efficient computation time.

92 CHAPTER 6. LEARNING BOOLEAN FUNCTIONS IN K-DNF

The space required by the LARCKDNF algorithm, as well as the time to update

the internal state or to evaluate an input instance, is proportional to the size of T,

and thus, 0(Mk).

6.4 Interval Estimation Algorithm for fc-DNF

The interval estimation algorithm for fc-DNF is, like the algorithm described in

Section 6.3, based on Valiant's algorithm, but the interval estimation algorithm

uses standard statistical estimation methods, like those used in the IE algorithm,

rather than weight-adjustments.

The algorithm will first be described independent of particular statistical tests,

which will be introduced later in the section. We shall need the following definitions,

however. An input bit vector satisfies a term whenever all the bits mentioned

positively in the term have value 1 in the input and all the bits mentioned negatively

in the term have value 0 in the input. The quantity er(i,a) is the expected value

of the reinforcement that the agent will gain, per trial, if it generates action a

whenever term t is satisfied by the input and action ->a otherwise. The quantity

ubra(t, a) is the upper bound of a 100(1 — a)% confidence interval on the expected

reinforcement gained from performing action a whenever term t is satisfied by the

input. The formal definition of the algorithm is given in Figure 41.

At any moment in the operation of this algorithm, we can extract a symbolic

description of its current hypothesis. It is the disjunction of all terms t such that

ubra(t, 1) > u6ra(i,0) and Pr(er(<, 1) = er(<,0)) < ß. This is the fc-DNF expression

according to which the agent is choosing its actions.

As in the regular interval-estimation algorithm, the evaluation criterion is chosen

in such a way as to make the important trade-off between acting to gain information

and acting to gain reinforcement. Thus, the first requirement for a term to cause a

1 to be emitted is that the upper bound on the expected reinforcement of emitting

a 1 when this term is satisfied is higher than the upper bound on the expected

reinforcement of emitting a 0 when the term is satisfied.

6.4. INTERVAL ESTIMATION ALGORITHM FORK-DNF 93

Algorithm 14 (IEKDNF)

S0 = the set T, with a collection of statistics
associated with each member of the set

e(s, i) = for each t in s
if i satisfies t and

ubra(t,l) > ubra(t,Q) and
Pr(er(*,l) = er(t,O))</0

then return 1
return 0

u(s,i,a,r) = for each t in s
updatejtermstatistics(t, i, a, r)

return s

Figure 41: The interval estimation algorithm for learning concepts in fc-DNF from
reinforcement.

Let the equivalence probability of a term be the probability that the expected

reinforcement is the same no matter what choice of action is made when the term is

satisfied. The second requirement for a term to cause a 1 to be emitted is that the

equivalence probability be small. Without this criterion, terms for which no action

is better will, roughly, alternate between choosing action 1 and action 0. Because

the output of the entire algorithm will be 1 whenever any term has value 1, this

alternation of values can cause a large number of wrong answers. Thus, if we can

convince ourselves that a term is irrelevant by showing that its choice of action

makes no difference, we can safely ignore it.

In the simple Boolean reinforcement-learning scenario, the necessary statistical

tests are quite simple. For each term, the following statistics are stored: n0, the

number of trials of action 0; s0, the number of successes of action 0; ni, the number of

trials of action 1; and .Sj, the number of successes of action 1. These are incremented

only when the associated term is satisfied by the current input instance. Using the

definition of ub(x,n) from Figure 21, we can define ubrQ(t,0) as ub(s0,n0) and

94 CHAPTER 6. LEARNING BOOLEAN FUNCTIONS IN K-DNF

ubra(t, 1) as ub(si,rii), where So, noi si> an<i ni are the statistics associated with

term t and a is used in the computation of ub.

To test for equality of the underlying Bernoulli parameters, we use a two-sided

test at the ß level of significance that rejects the hypothesis that the parameters

are equal whenever

»C _ *L
wo ni is either < or

/(^)(i-^)(no-^
V "oni

< -Zß/2

or

> +Zß/2

where zp/2 is a standard normal deviate [36]. Because sample size is important for

this test, the algorithm is slightly modified to ensure that, at the beginning of a run,

each action is chosen a minimum number of times. This parameter will be referred

to as ßmin.

As for the interval-estimation algorithm, real-valued reinforcement can be han-

dled in IEKDNF using statistical tests appropriate for normally-distributed values or

for non-parametric models. In nonstationary environments, statistics can be scaled

in order to ensure that the algorithm does not stay converged to a non-optimal

strategy.

The order complexity of this algorithm is the same as that of the LARCKDNF

algorithm of Section 6.3, namely 0(Mk).

6.5 Empirical Comparison

This section reports the results of a set of experiments designed to compare the

performance of the algorithms discussed in this chapter with one another, as well

as with some other standard methods.

6.5. EMPIRICAL COMPARISON 95

6.5.1 Algorithms and Environments

The following algorithms were tested in these experiments:

• LARC (Defined in Figure 18)

• LARC+ (LARC with an extra input wired to have a constant value)

• LARCKDNF (Defined in Figure 40)

• IEKDNF (Defined in Figure 41)

• BP (Defined in Figures 19 and 20)

• IE (Defined in Figure 21)

The regular interval-estimation algorithm IE is included as a yardstick; it is compu-

tationally much more complex than the other algorithms and should be expected

to out-perform them.

Each of the algorithms was tested in three different environments. The environ-

ments are called binomial Boolean expression worlds and can be characterized by

the parameters M, expr, pi„ pin, pos, and pon. The parameter M is the number of

input bits; expr is a Boolean expression over the input bits; pi, is the probability of

receiving reinforcement value 1 given that action 1 is taken when the input instance

satisfies expr, j>\n is the probability of receiving reinforcement value 1 given that

action 1 is taken when the input instance does not satisfy expr, poä is the probabil-

ity of receiving reinforcement value 1 given that action 0 is taken when the input

instance satisfies expr, p^ is the probability of receiving reinforcement value 1 given

that action 0 is taken when the input instance does not satisfy expr. Input vectors

are chosen by the world according to a uniform probability distribution.

Table 4 shows the values of these parameters for each task. The first task has

a simple, linearly separable function; what makes it difficult is the small separation

between the reinforcement probabilities. Task 6 has highly differentiated reinforce-

ment probabilities, but the function to be learned is a complex exclusive-or. Finally,

Task 7 is a simple conjunctive function, but all of the reinforcement probabilities

are high and it has twice as many input bits as the other two tasks.

96 CHAPTER 6. LEARNING BOOLEAN FUNCTIONS IN K-DNF

Task M expr pi, pin pos POn
5
6
7

3 («oAii)V(iiAtj) .6 .4 .4
3 (io A->ii) V (ii A->i2) V (i2 A--to) .9 .1 .1
6 t2A-us .9 .5 .6

.6

.9

.8

Table 4: Parameters of test environments for fc-DNF experiments.

6.5.2 Parameter Tuning

Each of the algorithms has a set of parameters. For both IEKDNF and LARCKDNF,

k = 2. Algorithms LARC, LARC+, and LARCKDNF have parameters a, ß, and

<T. Following Sutton [70], parameters ß and a in LARCKDNF, LARC, and LARC+

are fixed to have values .1 and .3, respectively. The IEKDNF algorithm has two

confidence-interval parameters, za/2 and zp/2, and a minimum age for the equality

test ßmin, while the IE algorithm has only z0/2. Finally, the BP algorithm has a large

set of parameters: ß, learning rate of the evaluation output units, /?/,, learning rate

of the evaluation hidden units, p, learning rate of the action output units, and p^,

learning rate of the action hidden units. All of the parameters for each algorithm

are chosen to optimize the behavior of that algorithm on the chosen task. The

success of an algorithm is measured by the average reinforcement received per tick,

averaged over the entire run.

For each algorithm and environment, a series of 100 trials of length 3000 were

run with different parameter values. Table 5 shows the best set of parameter values

found for each algorithm-environment pair.

6.5.3 Results

Using the best parameter values for each algorithm and environment, the perfor-

mance of the algorithms was compared on runs of length 3000. The performance

metric was average reinforcement per tick, averaged over the entire run. The re-

sults are shown in Table 6, together with the expected reinforcement of executing a

completely random behavior (choosing actions 0 and 1 with equal probability) and

of executing the optimal behavior.

6.5. EMPIRICAL COMPARISON 97

ALG-TASK 1 2 3
LARC

a .0625 .125 .125
LARC+

a .125 .0625 .25
LARCKDNF

a .125 .25 .03125
IEKDNF

Za/2 3 3.5 2.5
Zßß 1 2.5 3.5
Pmin 15 5 25
BP

ß .1 .25 .1
ßk .2 .3 .05
P .15 .15 .35

Ph .2 .05 .1
IE

Za/2 3.0 1.5 2.5

Table 5: Best parameter values for each fc-DNF algorithm in each environment.

ALG-TASK 1 2 3
LARC .5329 .7418 .7769

LARC+ .5456 .7459 .7722
LARCKDNF .5783 .8903 .7825

IEKDNF .5789 .8900 .7993
BP .5456 .7406 .7852
IE .5827 .8966 .7872

random .5000 .5000 .6750
optimal .6000 .9000 .8250

Table 6: Average reinforcement for fc-DNF problems over 100 runs of length 3000.

98 CHAPTER 6. LEARNING BOOLEAN FUNCTIONS IN K-DNF

As in the set of experiments described in Chapter 4, we must examine the

relationships of statistically significant dominance among the algorithms for each

task. Figure 42 shows, for each task, a pictorial representation of the results of a

1-sided t-test applied to each pair of experimental results. The graphs encode a

partial order of significant dominance, with solid lines representing significance at

the .95 level and dashed lines representing significance at the .85 level.

With the best parameter values for each algorithm, it is also instructive to

compare the rate at which performance improves as a function of the number of

training instances. Figures 43, 44, and 45 show superimposed plots of the learning

curves for each of the algorithms. Each point represents the average reinforcement

received over a sequence of 100 steps, averaged over 100 runs of length 3000.

6.5.4 Discussion

On Tasks 5 and 6, the basic interval-estimation algorithm, IE, performed signifi-

cantly better than any of the other algorithms. The magnitude of its superiority,

however, is not extremely great—Figures 43 and 44 reveal that the IEKDNF and

LARCKDNF algorithms have similar performance characteristics both to each other

and to IE. On these two tasks, the overall performance of IEKDNF and LARCKDNF

were not found to be significantly different.

The backpropagation algorithm, BP, performed considerably worse than ex-

pected on Tasks 5 and 6. It is very difficult to tune the parameters for this al-

gorithm, so its bad performance may be explained by a sub-optimal setting of

parameters.3 However, it is possible to see in the learning curves of Figures 43 and

44 that the performance of BP was still increasing at the ends of the runs. This may

indicate that with more training instances it would eventually converge to optimal

performance.

3In the parameter tuning phase, the parameters were varied independently—it may well be
necessary to perform gradient-ascent search in the parameter space, but that is a computationally
difficult task, especially when the evaluation of any point in parameter space may have a high degree
of noise.

6.5. EMPIRICAL COMPARISON 99

TASK 5 TASK 6

LARCKDNF JEKDNF jm LARCKDNF

LARC+

LARC

TASK 7
IEKDNF

>LARC+

Figure 42: Significant dQminance partial order among fc-DNF algorithms for each
task.

100 CHAPTER 6. LEARNING BOOLEAN FUNCTIONS IN K-DNF

er

10 15 20 25
bucket of 100 ticks

iekdnf
/. opt

ie
larckdnf

*- random
30

Figure 43: Learning curves for Task 5.

er

5 10 15 20 25
bucket of 100 ticks

random
30

Figure 44: Learning curves for Task 6.

6.5. EMPIRICAL COMPARISON 101

er

10 15 20 25

bucket of 100 ticks

Figure 45: Learning curves for Task 7.

lo
random

The linear-association algorithms performed poorly on both Tasks 5 and 6. This

poor performance was expected on Task 6, because such algorithms are known to be

unable to learn non-linearly-separable functions [47]. Task 5 is difficult for these al-

gorithms because, during the execution of the algorithm, the evaluation function is

often too complex to be learned by the simple linear associator. Adding a constant

input value to the LARC algorithm made a significant improvement in performance;

this is not surprising, because it allows the algorithm to find discrimination hyper-

planes that do not pass through the origin of the space.

Task 7 reveals many interesting strengths and weaknesses of the algorithms.

One of the most interesting is that IE is no longer the best performer. Because

the target function is simple and there is a larger number of input bits, the ability

to generalize across input instances becomes important. The IEKDNF algorithm is

able to find the correct hypothesis early during the run (this is apparent in the

learning curve of Figure 45). However, because the reinforcement values are not

highly differentiated and because the size of the set T is quite large, it begins to

include extraneous terms due to statistical fluctuations in the environment, causing

slightly degraded performance. The IE, BP, and LARCKDNF algorithms all have very

102 CHAPTER 6. LEARNING BOOLEAN FUNCTIONS IN K-DNF

similar performance on Task 7, with the linear-associator algorithms performing

slightly worse, but still reasonably well.

6.6 Conclusion

Prom this study, we can see that it is useful to design algorithms that are tai-

lored to learning certain restricted classes of functions. The two specially-designed

algorithms fax out-performed standard methods of comparable complexity. The

LARCKDNF and IEKDNF algorithms each have their strengths and weaknesses. It is

possible that LARCKDNF may outperform IEKDNF to some extent because in LAR-

CKDNF each term gets to contribute to the answer with different degrees. This

avoids errors that occur in IEKDNF when a single term is barely over the threshold

for generating a 1. On the other hand, the state of IEKDNF has internal semantics

that are clear and directly interpretable in the language of classical statistics. This

simplifies the process of extending the algorithm to apply to other types of worlds

in a principled manner.

Chapter 7

A Generate-and-Test Algorithm

This chapter describes GTRL, a highly parametrized generate-and-test algorithm for

learning Boolean functions from reinforcement. Some parameter settings make it

highly time- and space-efficient, but allow it to learn only a restricted class of func-

tions; other parameter settings allow arbitrarily complex functions to be learned,

but at a cost in time and space.

7.1 Introduction

The generate-and-test reinforcement-learning algorithm, GTRL, performs a bounded,

real-time beam-search in the space of Boolean formulae, searching for a formula that

represents an action function that exhibits high performance in the environment.

This algorithm adheres to the strict synchronous tick discipline of the learning-

behavior formulation of Chapter 2, performing its search incrementally, while using

the best available solution to generate actions for the inputs with which it is pre-

sented.

The algorithm has, at any time, a set of hypotheses that it is considering. A

hypothesis has as its main component a Boolean formula whose atoms are input bits

or their negations. Negations can occur only at the lowest level in the formulae.1

Each formula represents a potential action-map for the behavior, generating action 1

*Any Boolean formula can be put in this form using DeMorgan's laws.

103

104 CHAPTER 7. A GENERATE-AND-TEST ALGORITHM

whenever the current input satisfies the formula and action 0 when it does not. The

GTRL algorithm generates new hypotheses by combining the formulae of existing

hypotheses using syntactic conjunction and disjunction operators.2 This generation

of new hypotheses represents a search through Boolean-formula space; statistics

related to the performance of the hypotheses in the domain are used to guide the

search, choosing appropriate formulae to be combined.

This search is quite constrained, however. There is a limit on the number of

hypotheses with formulae at each level of Boolean complexity (depth of nesting of

Boolean operators), making the process very much like a beam search in which the

entire beam is retained in memory. As time passes, old elements may be deleted

from and new elements added to the beam, as long as the size is kept constant.

This guarantees that the algorithm will operate in constant time per input instance

and that the space requirement will not grow without bound over time. 3

This search method is inspired by Schlimmer's STAGGER system [65,66,64,63,62]

for learning Boolean functions from input-output pairs. STAGGER makes use of a

number of techniques, including a Bayesian weight-updating component, that are

inappropriate for the reinforcement-learning problem. In addition, it is not strictly

limited in time- or space-complexity. The GTRL algorithm exploits STAGGER's idea

of performing incremental search in the space of Boolean formulae, using statistical

estimates of the "necessity" and "sufficiency" (these notions will be made concrete

in the following discussion) to guide the search.

The presentation of the GTRL algorithm will be independent of any distribu-

tional assumptions about the reinforcement values generated by the environment;

it will, however, assume that the environment is consistent (see Section 2.1.2 for

the definition) for the agent. The process of tailoring the algorithm to work for

particular kinds of reinforcement will be described in Section 7.3.

2Other choices of syntactic search operators are possible. Conjunction and disjunction are used
here because of the availability of good heuristics for guiding their application. These heuristics will
be discussed in Section 7.5.1.

3An alternative would be to simply limit the total number of hypotheses, without sorting them
into levels. This approach would give added flexibility, but would also cause some increase in
computational complexity. In addition, it is often beneficial to retain hypotheses at low levels of
complexity because of their usefulness as building blocks.

7.2. HIGH-LEVEL DESCRIPTION 105

7.2 High-Level Description

As with other learning behaviors, we will view the GTRL algorithm in terms of

initial state, update function, and evaluation function, as shown in Figure 46. The

internal state of the GTRL algorithm consists of a set of hypotheses organized into

levels. Along with a Boolean formula, each hypothesis contains a set of statistics

that reflect different aspects of the performance of the formula as an action map in

the domain. Each level contains hypotheses whose formulae are of a given Boolean

complexity. Figure 47 shows an example GTRL internal state. Level 0 consists of

hypotheses whose formulae are individual atoms corresponding to the input bits and

to their negations, as well as the hypotheses whose formulae are the logical constants

true and false.4 Hypotheses at level 1 have formulae that are conjunctions and

disjunctions of the formulae of the hypotheses at level 0. In general, the hypotheses

at level n have formulae that consist of conjunctions or disjunctions of two formulae:

one from level n — 1 and one from any level, from 0 to n — 1. The hypotheses at

each level are divided into working and candidate hypotheses; the reasons for this

distinction will be made clear during the detailed explanation of the algorithm.

The update function of the GTRL algorithm consists of two phases: first, up-

dating the statistics of the individual hypotheses and, second, adding and deleting

hypotheses.

The evaluation function also works in two phases. The first step is to find the

working hypothesis at any level that has the best performance at choosing actions.

If the chosen working hypothesis is satisfied by the input to be evaluated, action 1

is generated; if it is not satisfied, action 0 is generated.

The following sections will examine these processes in greater detail.

4It is necessary to include true and false in case either of those is the optimal hypothesis. Hy-
potheses at higher levels are simplified, so even if a A ->a or a V -»a were to be constructed, it would
not be retained.

106 CHAPTER 7. A GENERATE-AND-TEST ALGORITHM

Algorithm 15 (GTRL)

s0 = array[0..L] of
record

working-hypoths: array[0..H] of hypoth
candidate-hypoths: array[0..C] of hypoth

end
u(s, i, a, r) = update-hypotheses (s, i, a, r)

for each level in s do begin
add-kypotheses (level, s)
promote-hypotheses (level)
prune-hypotheses (level)

end
e(s,i) = h := best-predictor (s)

if satisfies (i, h) then
return 1

else return 0

Figure 46: High-level description of the GTRL algorithm.

Level 2 (a v b) A (-ib v -ic) (b v c) A —a (c A —d) v (a A -JJ)

Level 1 flvfr bvc CA-ifl —ibv-ic flA-ift

Level 0 a —a b -b c -nC t f

Figure 47: Example GTRL internal state.

7.3. STATISTICS 107

7.3 Statistics

Associated with each working and candidate hypothesis is a set of statistics; these

statistics are used to choose working hypotheses for generating actions and for com-

bination into new candidate hypotheses at higher levels. The algorithms for updat-

ing the statistical information and computing statistical quantities are modularly

separated from the rest of the GTRL algorithm. The choice of statistical module

will depend on the kind and distribution of reinforcement values received from the

environment. Appendix A provides the detailed definitions of statistics modules

for cases in which the reinforcement values are binomially or normally distributed;

in addition, it contains a non-parametric statistics module for use when there is

no known model of the distribution of reinforcement values. A statistics module

supplies the following functions:

age(h): The number of times the behavior, as a whole, has taken the action that

would have been taken had hypothesis h been used to generate the action.

er(h): A point estimate of the expected reinforcement received given that the action

taken by the behavior agrees with the one that would have been generated

had hypothesis h been used to generate the action.

er-ub{h): The upper bound of a 100(1 - a)% confidence interval estimate of the

quantity estimated by er(h).

erp(h): A point estimate of the expected reinforcement received given that hypoth-

esis h was used to generate the action that resulted in the reinforcement.

erp-v,b(h): The upper bound of a 100(1 - <*)% confidence interval estimate of the

quantity estimated by erp(h).

N(h): A point estimate of the expected reinforcement received given that the action

taken by the behavior was 0 and hypothesis h would have generated action 0

as well.

108 CHAPTER 7. A GENERATE-AND-TEST ALGORITHM

S(h): A point estimate of the expected reinforcement received given that the action

taken by the behavior was 1 and hypothesis h would have generated action 1

as well.

7.4 Evaluating Inputs

Each time the evaluation function is called, the most predictive working hypothesis

is chosen, by taking the one with the highest value of pv, defined as

pv(h) = [K tr(h)\ + erp-ub(h) .

This definition has the effect of sorting first on the criterion of er, then breaking ties

based on the value of erp-ub. The constant multiplier « can be adjusted to make

this criterion more or less sensitive to low-order digits of the value of er(h).5

What makes this an appropriate criterion for choosing the hypothesis with the

best performance? The quantity that most clearly represents the predictive value

of the hypothesis is erp(h), which is a point estimate of the expected reinforce-

ment given that actions are chosen according to hypothesis h. Unfortunately, this

quantity only has a useful value after the hypothesis has been chosen to generate

actions a number of times. Thus, as in the interval estimation algorithm, we make

use of erp-ub(h), the upper bound of a confidence interval estimate of the expected

reinforcement of acting according to hypothesis h.

So, why not simply choose the working hypothesis with the highest value of

erp-ub(h), similar to what would be done in the interval estimation algorithm? The

reason lies in the fact that in the GTRL algorithm, new hypotheses are continually

being created. If it always chooses hypotheses with high values of erp-ub(h), it will

be in danger of spending nearly all of its time choosing hypotheses because little

is known about them, rather than because they are known to perform well. The

value of er(h) serves as a filter on hypotheses that will prevent most of this fruitless

exploration. The quantity er(h) is not a completely accurate estimator of erp(h),

because the distribution of instances over which it is defined may be different than

5In all of the experiments described in this chapter, K had the value 1000.

7.5. MANAGING HYPOTHESES 109

the distribution of input instances presented to the entire algorithm,6 but it serves

as a useful approximation. We can use er(h) rather than er-ub(h) because the

statistics used to compute er(h) get updated even when h is not used to generate

actions, so that statistic becomes valid eventually without having to do any special

work. Thus, hypotheses that look good on the basis of the value of er(h) tend to

get chosen to act; as they do, the value of erp-ub(h) begins to reflect their true

predictive value. This method still spends some time acting according to untested

hypotheses, but that is necessary in order to allow the algorithm to discover the

correct hypothesis initially and to adjust to a dynamically changing world. The

amount of exploration that actually takes place can be controlled by changing the

rate at which new hypotheses will be generated, as will be discussed in Section 7.7.

Once a working hypothesis is chosen, it is used to evaluate the input instance.

An input vector i satisfies hypothesis h if fc's formula evaluates to true under the

valuation of the atoms supplied by input i. If the input instance satisfies the chosen

hypothesis, action 1 is generated; otherwise, action 0 is generated.

7.5 Managing Hypotheses

The process by which hypotheses are managed in the GTRL algorithm can be divided

into three parts: adding, promoting, and pruning. On each call to the update

function, the statistics of all working and candidate hypotheses are updated. Then,

if it is time to do so, a new hypothesis may be constructed and added to the

candidate list of some level. Candidate hypotheses that satisfy the appropriate

requirements are "promoted" to be working hypotheses. Finally, any level that

has more working hypotheses than the constant number allotted to it will have its

working hypothesis list pruned.

6This difference in distributions depends on the fact that er(h) is conditioned on the agreement
between hypothesis h and whatever hypotheses are actually being used to generate actions.

110 CHAPTER 7. A GENERATE-AND-TEST ALGORITHM

7.5.1 Adding Hypotheses

Search in the GTRL algorithm is carried out through the addition of hypotheses.

Each new hypothesis is a conjunction or disjunction of hypotheses from lower levels.7

On each update cycle, a candidate hypothesis is added to a level if the level is not

yet fully populated (the total number of working and candidate hypotheses is less

than the maximum number of working hypotheses) or if it has been a certain length

of time since a candidate hypothesis was last generated for this level and there is

room for a new candidate.

If it is time to generate a new hypothesis, it is randomly decided whether to

make a conjunctive or disjunctive hypothesis.8 Once the combining operator is

determined, operands must be chosen.

The following search heuristic is used to guide the selection of operands:

When making a conjunction, use operands that have a high value of

necessity; when making a disjunction, use operands that have a high

value of sufficiency.

The terms necessity and sufficiency have a standard logical interpretation: P is

sufficient for Q if P implies Q; P is necessary for Q if -iP implies ->Q (that is, Q

implies P). Schlimmer follows Duda, Hart, and Nilsson [19,20], denning the logical

sufficiency of evidence E for hypothesis H as

LS(E m - Pr(Jg Ig) LS{E>H)-pr(E\H)

and the logical necessity of E for H as

Pr(E | H)
LN(E1H) =

Pr(£ | H)

7Terminology is being abused here in order to simplify the presentation. Rather than conjoining
hypotheses, the algorithm actually creates a new hypothesis whose formula is the conjunction of the
formulae of the operand hypotheses. This use of terminology should not cause any confusion.

8Schlimmer's STAGGER system generates new hypotheses in response to errors, using the nature
of the error (false positive vs. true negative) to determine whether the new hypothesis should be a
conjunction or a disjunction. This method cannot be applied in the general reinforcement-learning
scenario, in which the algorithm is never told what the "correct" answer is, making it unable to
know whether or not it just made an "error."

7.5. MANAGING HYPOTHESES 111

If E is truly logically sufficient for H, then E implies H, so PT(E \ H) = 0, making

LS(E,H) = 00. If E and H are statistically independent, then LS(E,H) = 1.

Similarly, if E is logically necessary for H, then .E implies #, so Pr(iS | H) = 0,

making LN(£,,¥) = 0. As before, if E and if are independent, LN(£,#) = 1.

What makes functions like these useful for our purposes is that they encode the

notions of "degree of implication" and "degree of implication by."9 Let h*(i) be the

optimal hypothesis, defined by

Vz./i*(i")<->Opt(i,l) ,

where Opt is denned as in Chapter 2. We would like to use these same notions of

necessity and sufficiency to guide our search, estimating the necessity and sufficiency

of hypotheses in the GTRL algorithm state for h", the Boolean function that encodes

the optimal action policy for the environment. But, because of the reinforcement-

learning setting of our problem, we have no access to or direct information about

h*—the environment never tells the agent which action it should have taken.

If we define the sufficiency of hypothesis h for the optimal policy, S(h) as

S(h) = er(i, 1 | satisfies(i, h)) ,

we have a function with the desired properties. If h implies h', then

S(h) = er(i,l \ satisfies(i,h*)) ,

which is the best that can be done on this set of inputs, because whenever action 1

would be taken by h, it would also be taken by h*. In all other cases, S(h) < S(h'),

with S(h) roughly encoding the degree to which h implies h*. If h and h* are

completely uncorrelated, S(h) is the expected reinforcement of acting according to

a random policy. Similarly, we define the necessity of a hypothesis h for the optimal

policy, N(h), as

N(h) = er(f,0 I satisfies(i,h)) .

9The LS and LN functions were designed for combining evidence in a human-intuitive way; their
quantitative properties are crucial to their correctness and usefulness for this purpose. The S and N
operators that will be proposed do not have the appropriate quantitative properties for such uses.

112 CHAPTER 7. A GENERATE-AND-TEST ALGORITHM

If ->h implies ->h*, then

N(h) = er(t,0 | satisfies(i,h')) ,

because whenever action 0 would be taken by h it would be taken by h*. In all other

cases, N(h) < N(h*), with N roughly encoding the degree to which h is implied by

h\

Now we understand the definition and purpose of the necessity and sufficiency

operators, but what makes them appropriate for use as search-control heuristics? In

general, if we have a hypothesis that is highly sufficient, it can be best improved by

making it highly necessary as well; this can be achieved by making the hypothesis

more general by disjoining it with another sufficient hypothesis. Similarly, given a

highly necessary hypothesis, we would like to make it more sufficient; we can achieve

this through specialization by conjoining it with another necessary hypothesis. As

a simple example, consider the case in which h* = aVb. In this case, the hypothesis

a is logically sufficient for h*, so the heuristic will have us try to improve it by

disjoining it with another sufficient hypothesis. If h* = a A 6, the hypothesis a is

logically necessary for h*, so the heuristic would give preference to conjoining it

with another necessary hypothesis.

Having decided, for instance, to create a new disjunctive hypothesis at level n,

the algorithm uses sufficiency as a criterion for choosing operands. This is done by

creating two sorted lists of hypotheses: the first list consists of the hypotheses of

level n — 1, sorted from highest to lowest sufficiency; the second list contains all of

the hypotheses from levels 0 to n — 1, also sorted by sufficiency. The first list is

limited in order to allow complete coverage of the search space without duplication

of hypotheses at different levels. Thus, for example, a hypothesis of depth 2 can be

constructed at level 2, but one of depth 1 cannot.

Given the two sorted fists (another sorting criterion could easily be substituted

for necessity or sufficiency at this point), a new disjunctive hypothesis is constructed

by syntactically disjoining the formulae associated with the hypotheses at the top

of each list. This new formula is then simplified and put into a canonical form.10

10The choice of canonicalization and simplification procedures represents a tradeoff between com-
putation time and space used in canonicalization against the likelihood that duplicate hypotheses

7.5. MANAGING HYPOTHESES 113

index-1 := 0
index-2 :« 0
index-sum :* 0
loop

try-hypoth(list-1 [index-1],list-2[index-2]);

index-1 :■ index-1 + 1;
index-2 :« index-2 - 1;
if index-2 * -1 then begin

index-sum :■ index-sum + 1
index-1 := 0
index-2 :* index-sum

end
end

Figure 48: Code to generate the best new hypothesis.

If the simplified formula is of depth less than n it is discarded, because if it is

important, it will occur at a lower level and we wish to avoid duplication. If it is

of depth n, it is tested for syntactic equality against all other hypotheses at level

n. If the hypothesis is not a syntactic duplicate, it is added to the candidate list

of level n and its statistics are initialized. If the new hypothesis is too simple or

is a duplicate, two new indices into the sorted lists are chosen and the process is

repeated. The new indices are chosen so that the algorithm finds the non-duplicate

disjunction made from a pair of hypotheses whose sum of indices is least., This is

achieved by the code shown in Figure 48. The complexity of this process can be

controlled by limiting the total number of new hypotheses that can be tried before

giving up. In addition, given such a limit, it is possible to generate only prefixes

of the sorted operand-lists that are long enough to support the desired number of

attempts.

will not be detected. Any process for putting Boolean formulae into a normal form that reduces
semantic equivalence to syntactic equivalence has exponential worst-case time and space complexity
in the original size of the formula. The CTRL algorithm currently uses a very simple simplification
process whose complexity is linear in the original size of the formula and that seems, empirically, to
work well. This simplification process is described in detail in Appendix B.

114 CHAPTER 7. A GENERATE-AND-TEST ALGORITHM

7.5.2 Promoting Hypotheses

On each update phase, the candidate hypotheses are considered for promotion. The

reason for dividing the candidate hypotheses from the working hypotheses is to be

sure that they have gathered enough statistics for their values of N, S, and er to

be fairly accurate before they enter the pool from which operands and the action-

generating hypothesis are chosen. Thus, the criterion for promotion is simply the

age of the hypothesis, which reflects the accuracy of its statistics. Any candidate

that is old enough is moved, on this phase, to the working hypothesis list.

7.5.3 Pruning Hypotheses

After candidates have been promoted, the total number of working hypotheses in a

level may exceed the preset limit. If this happens, the working hypothesis list for the

level is pruned. An hypothesis can play an important role in the GTRL algorithm for

three reasons: its prediction value is high, making it useful for choosing actions; its

sufficiency is high, making it useful for combining into disjunctions; or its necessity

is high, making it useful for combining into conjunctions. For these reasons, we

adopt the following pruning strategy:

To prune down to n hypotheses, first choose the n/3 hypotheses with the

highest predictive value; of the remaining hypotheses, choose the n/3 with

the highest necessity; and, finally, of the remaining hypotheses, choose

the n/3 with the highest sufficiency.

This pruning criterion is applied to all but the bottom-most and top-most levels.

Level 0, which contains the atomic hypotheses and their negations, must never be

pruned, or the capability of generating the whole space of fixed-size Boolean for-

mulae will be lost. Because its hypotheses will not undergo further recombination,

the top level is pruned so as to retain the n most predictive hypotheses.

7.6. PARAMETERS OF THE ALGORITHM 115

7.6 Parameters of the Algorithm

The GTRL algorithm is highly configurable, with its complexity and learning ability

controlled by the following parameters:

L: The number of levels of hypotheses.

za/2: The size of the confidence interval used to generate erp-ub.

H(l): The maximum number of working hypotheses per level; can be a function of

level number, /.

C(/): The maximum number of candidate hypotheses per level; can be a function

of level number, /.

PA: The age at which candidate hypotheses are promoted to be working hypotheses.

R: The rate at which new hypotheses are generated; every R ticks, for each level, /,

if there are not more than C(l) candidate hypotheses, a new one is generated.

T: The maximum number of new hypotheses that are tried, in a tick, to find a

non-duplicate hypothesis.

Mi The number of input bits.

Because level 0 is fixed, we have H(0) = 2M + 2.

7.7 Computational Complexity

The space complexity of the GTRL algorithm is

O(EWi) + CU))V) ;

for each level j of the L levels, there are H(j) + C(j) working and candidate hy-

potheses, each of which has size at most 2J for the Boolean expression, plus a

116 CHAPTER 7. A GENERATE-AND-TEST ALGORITHM

constant amount of space for storing the statistics associated with the hypothesis.

This expression can be simplified, if H and C are independent of level, to

0(L(H + C)(2L+1 - 1)) .

which is

0(L(H + C)2L) .

The time complexity for the evaluation function is

0(J2H(j)+2L) ;
3=0

the first term accounts for spending a constant amount of time examining each

working hypothesis to see which one has the highest predictive value. Once the most

predictive working hypothesis is chosen, it must be tested for satisfaction by the

input instance; this process takes time proportional to the size of the expression, the

maximum possible value of which is 2L. If if is independent of level, this simplifies

to

0(LH + 2L) .

The expression for computation time of the update function is considerably more

complex. It is the sum of the time taken to update the statistics of all the working

and candidate hypotheses plus, for each level, the time to add hypotheses, promote

hypotheses, and prune hypotheses for the level.

The time to update the hypotheses is the sum of the times to update the indi-

vidual hypotheses. The update phase requires that each hypothesis be tested to see

if it is satisfied by the input. This testing requires time proportional to the size of

the hypothesis. Thus we have a time complexity of

0(t(H(j) + C(j))V)
;=o

which simplifies to

0(L(H + C)2L) .

The time to add hypotheses consists of the time to create the two sorted lists

(assumed to be done in n log n time in the length of the list) plus the number of new

7.7. COMPUTATIONAL COMPLEXITY 117

hypotheses tried times the amount of time to construct and test a new hypothesis

for duplication. This time is, for level j,

0(H(j - l)log H(j - 1) + (J2 H(k))log(£ H(k)) + TT{H(j) + C(j))) .
Jt=0 fe=0

The last term is the time for testing new hypotheses against old ones at the same

level to be sure there are no duplicates. Testing for syntactic equality takes time

proportional to the size of the hypothesis and must be done against all working and

candidate hypotheses in level j. There is no explicit term for simplification of newly

created hypotheses because GTRL uses a procedure that is linear in the size of the

hypothesis.

The time to promote hypotheses is simply proportional to the number of candi-

dates, C(j).

Finally, the time to prune hypotheses is 3 times the time to choose the H(j)/Z

best hypotheses which, for the purpose of developing upper bounds, is H(j) log H(j).

Summing these expressions for each level and making the simplifying assumption

that H and C do not vary with level yields a time complexity of

0(L(H log H + LH \og(LH) + T2L(H + C) + C + H log H)) ,

which can be further simplified to

0(L2Hlog(LH) + T2LL(H + C)) . (10)

The time complexity of the statistical update component, 0(L(H + C)2L), is domi-

nated by the second term above, making expression 10 above the time complexity of

the entire update function. This is the complexity of the longest possible tick. The

addition and pruning of hypotheses, which are the most time-consuming steps, will

happen only once every R ticks. Taking this into account, we get a kind of "average

worst-case" total complexity (the average is guaranteed when taken over a number

of ticks, rather than being a kind of expected complexity based on assumptions

about the distribution of inputs) of

0(L(H + C)2L + ±L2H log(LH) + ^2LL(H + C)) .

118 CHAPTER 7. A GENERATE-AND-TEST ALGORITHM

The complexity in the individual parameters is 0(2L), 0(H log H), 0(1/R), 0(T),

0(C). Clearly, the number of levels and the number of hypotheses per level have

the greatest effect on total algorithmic complexity.11

7.8 Choosing Parameter Values

This section will explore the relationship between the settings of parameter values

and the learning abilities of the GTRL algorithm.

7.8.1 Number of Levels

Any Boolean function can be written with a wide variety of syntactic expressions.

Consider the set of Boolean formulae with the negations driven in as far as possible,

using DeMorgan's laws. The depth of such a formula is the maximum nesting depth

of binary conjunction and disjunction operators within the formula. The depth of a

Boolean function is defined to be the depth of the shallowest Boolean formula that

expresses the function.

An instance of the GTRL algorithm with L levels of combination is unable to

learn functions with depth greater than L. Whether it can learn all functions of

depth L or less depends on the settings of other parameters in the algorithm. The

time and space complexities of the algorithm are, technically, most sensitive to this

parameter, both being exponential in the number of levels. However, in practical

applications of this algorithm, H is usually considerably larger than 2L.

7.8.2 Number of Working and Candidate Hypotheses

The choice of the size of the hypothesis lists at each level also has a great effect

on the overall complexity of the algorithm. The working hypothesis list needs

to be at least big enough to hold all of the subexpressions of some formula that

describes the target function. Thus, in order to learn the function described by

11 This complexity is not as bad as it may look, because 1L is just the length of the longest formula
that can be constructed by the algorithm. The time and space complexities are linear in this length.

7.8. CHOOSING PARAMETER VALUES 119

»o A (t'i V 1*2) A (13 V -'14), level 1 must have room for at least two working hypotheses,

i'i V »2 and i2 V -1(4, and levels 2 and 3 must have room for at least one working

hypothesis each.

This amount of space will rarely be sufficient, however. There must also be room

for newly generated hypotheses to stay until they are tested and proven or disproven

by their performance in the environment. Exactly how much room this is depends

on the rate, R, at which new hypotheses are generated and on the size, zQ/2, of the

confidence intervals used to generate erp-ub. To see this, consider the case in which

a representation of the optimal hypothesis, h*, has already been constructed. The

algorithm continues to generate new hypotheses, one every R ticks, with each new

hypothesis requiring an average of j ticks to be proven to be worse than h*. That

means there must be an average of R/j slots for extra hypotheses at this level. Of

course, it is likely that during the course of a run, certain non-optimal hypotheses

will take more than j ticks to disprove. This can cause h* to be driven out of

the hypothesis list altogether during the pruning phase. Thus, a more conservative

strategy is to prevent this by increasing the size of the hypothesis lists, but at a

penalty in computation time.

Even when there is enough space for all subexpressions and their competitors at

each level, it is possible for the size of the hypothesis lists to affect the speed at which

the optimal hypothesis is generated by the algorithm. This can be easily understood

in the context of the difficulty of a function for the algorithm. Intuitively, functions

whose subexpressions are not naturally preferred by the necessity and sufficiency

search heuristics are difficult for the GTRL algorithm to construct. In such cases,

the algorithm is reduced to randomly choosing expressions at each level.

Consider the case in which h* = (t0 A ->i\) V (->i0 A t'i), an exclusive-or function.

Because h* neither implies nor is implied by any of the input bits, the atoms will

all have similar, average values of N and S. Due to random fluctuations in the

environment, different atoms will have higher values of N and S at different times

during a run. Thus, the conjunctions and disjunctions at level 1 will represent a

sort of random search through expression space. This random search will eventually

generate one of the following expressions: i0 A —»i'i, -u'o A ij, io V t'i, -u'o V -u'i. When

120 CHAPTER 7. A GENERATE-AND-TEST ALGORITHM

one of these is generated, it will be retained in the level 1 hypothesis list because of

its high necessity or sufficiency. We need only wait until the random combination

process generates its companion subexpression, and they will be combined into a

representation of h* at level 2.

Even with very small hypothesis lists, the correct answer will eventually be

generated. However, as problems become more difficult, the probability that the

random process will, on any given tick, generate the appropriate operands becomes

very small, making the algorithm arbitrarily slow to converge to the correct answer.

This process can be made to take fewer ticks by increasing the size of the hypothesis

list. In the limit, the hypothesis list will be large enough to hold all conjunctions

and disjunctions of atoms at the previous level and as soon as it is filled, the correct

building blocks for the next level will be available and apparent.

We can measure the overall difficulty of a function for the GTRL algorithm in

the context of a particular distribution of input instances by measuring the degree

to which the individual input bits are necessary or sufficient for the function. We

can define the difficulty of function /, D(f), as

W)= E fmin(r u) fVT« \ n>+ ™(^('i. /). LN^iJ))) . j<M\ Lb(ij,f) L5(-i»j,/))

For each positive atom, the lack of sufficiency or necessity makes the problem more

difficult; the term min(L5,j », L5A ») measures the degree to which the atom

and its negation are insufficient; the term min(LiV(ij, /), LN(-iij, /)) measures the

degree to which the atom and its negation are unnecessary (recall that high values

of LS indicate sufficiency and low values of LN indicate necessity). Given that

LS(a, b) = LN(->a, 6), we can simplify the definition to

D(f)= E (mm(—^,—-V^) + min(XS(ij,/),I5(S-,/))) •

In this form, the difficulty of the function true would be 2M, where M is the number

of input bits, because each of the bits is unnecessary and insufficient for the function.

We can correct for irrelevant input bits by subtracting 2 for every bit that has no

7.8. CHOOSING PARAMETER VALUES 121

effect on the value of /, yielding

D(f) = £ (min(l5fL_, jg^r-rf + min(ISfe, /), LS(^ /))) - 2C ,

where C is the number of input bits that have no effect on the value of /.

The definition uses LS and LN rather than S and N, because LS and LTV have

well-understood ranges, with values of 1 indicating lack of necessity and sufficiency.

Because S and N are monotonic in LS and LN, distinctions that are apparent

when using LS and LN, which is what are measured by D, will also be apparent

when using 5 and N. When the input bits all have an effect on the value of /, but

are completely unnecessary and insufficient for /, its difficulty will be IM.

The values of LS and LN depend on being able to evaluate the probability of a

particular input vector arriving; thus, this measure assumes that there is some fixed

distribution on the input vectors. If there is no such fixed distribution (as we have

argued may not be the case in many embedded learning scenarios), the difficulty

could be defined to be the supremum over all possible distributions.

This difficulty measure can be illustrated by considering the space of possible

Boolean functions on three input bits, in which the individual input vectors are

assumed to be uniformly distributed. Following Schlimmer [62], the set of 3-input

Boolean functions can be divided into 19 classes, which are equivalence classes under

permutation and negation of the input bits. Table 7 uses Schlimmer's numbering

system, giving a representative function from each class and its D measure. The

classes, going from easy to difficult are ordered as follows:

{0,4c,8}, {2c, 6c}, {1,7}, {Ad}, {36,56}, {4c}, {3a, 5a}, {4a}, {26,66}, {46}, {2a,6a} .

Interestingly, all functions with difficulty less than 3 are linearly separable and those

with difficulty greater than 3 are not. Also, D seems to measure the difficulty of

problems for STAGGER more accurately, in many cases, than the measure used by
Schlimmer.12

"Schlimmer used a measure of the dependence of the concept on the input bits which is based on
Fisher's [23] work on category utility.

122 CHAPTER 7. A GENERATE-AND-TEST ALGORITHM

CLASS / W)
0. false 0.00
1. aAlAc 1.28

2a. (a A b A c) V (-.a A -«6 A ->c) 6.00
2b. aA((6Ac)VH>A^c)) 4.33
2c. a Ab 0.67
3a. (a A 6) V (la A-iiA ~^c) 3.47
3b. a A (6 V c) 2.50
4a. (a A -16) V (-«a A 6) 4.00
4b. (a A (b V c)) V (-ia A -■& A ^c) 4.67
4c. (a A c) V (--6 A -ic) 3.33
4d. (a A b) V (fc A c) V (c A a) 2.00
4e. a 0.00
5a. (a V 6) A (-.a V -.6 V -ic) 3.47
5b. a V (b A c) 2.50
6a. (a V 6 V c) A (-.a V i6 V ->c) 6.00
6b. a V ((6 V c) A (-nfe V ->c)) 4.33
6c. aV6 0.67
7. aV6Vc 1.28
8. true 0.00

Table 7: Difficulties of classes of 3-input Boolean functions.

7.8. CHOOSING PARAMETER VALUES 123

7.8.3 Promotion Age

The choice of values for the age parameter depends on how long it takes for the

er, N, and S statistics to come to be a good indication of the values they are

estimating. If reinforcement has a high variance, for instance, it may take more

examples to get a true statistical picture of the underlying processes. If the value of

R is large, causing new combinations to be made infrequently, it is often important

for promotion age to be large, ensuring that the data that guides the combinations

is accurate. If R is small, the effect of occasional bad combinations is not so great

and may be outweighed by the advantage of moving candidate hypotheses more

quickly to the working hypothesis list.

7.8.4 Rate of Generating Hypotheses

The more frequently new hypotheses are generated, the sooner the algorithm will

construct important subexpressions and the more closely it will track a changing

environment. However, each new hypothesis that has a promising value of er will

be executed a number of times to see if its value of erp is as high as that of the

current best hypothesis. In general, most of these hypotheses will not be as good as

the best existing one, so using them to choose actions will decrease the algorithm's

overall performance significantly.

7.8.5 Maximum New Hypothesis Tries

The attempt to make a new hypothesis can fail for two reasons. Either the newly-

created hypothesis already exists in the working or candidate hypothesis list of the

level for which it was created or the expression associated with the hypothesis was

subject to one of the reductions of Appendix B, causing it to be inappropriate for

this level. It is possible, but very unlikely, to have more than H + C failures of the

first type. The number of failures of the second type is harder to quantify.

124 CHAPTER 7. A GENERATE-AND-TEST ALGORITHM

7.9 Empirical Results

This section describes a set of experiments with the GTRL algorithm. First, the

operation of the GTRL algorithm is illustrated by discussing a sample run. Then,

the dependence of the algorithm's performance on the settings of its parameters

is explored. Finally, the performance of the GTRL algorithm is compared with the

algorithms of the previous chapter on Tasks 5, 6, and 7.

7.9.1 Sample Run

Figure 49 shows the trace of a sample run of the GTRL algorithm. It is executed

on Task 8, a binomial Boolean-expression world13 with 3 input bits, in which the

expression is (bo V&i) A(6i Vb2), pi3 = .9, pi„ = .1, po» = .1, and po„ = -9. The figure

shows the state of the algorithm at ticks 50, 100, and 250. The report for each tick

shows the working hypotheses for each level, together with their statistics. 14 In

order to save space in the figure, only the four most predictive working hypotheses

are shown at each level. At tick 50, the two component hypotheses, 60Afci and bt A 62,

have been constructed. They both have high levels of sufficiency, which makes them

good operands for disjunction. By tick 100, the correct disjunction has been made,

and the most predictive hypothesis is the optimal hypothesis (b0 A 6X) V (bi A b2).

At tick 250, the optimal hypothesis is still winning and the average reinforcement

is approaching optimal.

7.9.2 Effects of Parameter Settings on Performance

The section describes a set of experiments that illustrate how learning performance

varies as a function of the values of the parameters PA, R, and H on Task 8,

which was described in the previous section. The parameter L was set to 3, za/2

to 2, C to be equal to H, and T to 100. Figures 50, 51, and 52 show the results,

13Binomial Boolean-expression worlds are defined in Section 6.5.1.
14The age statistic reported in the trace is the number of times the hypothesis has been chosen

to generate actions, rather than the value of age, which is the number of times this hypothesis has
agreed with the ones that have been chosen to generate actions.

7.9. EMPIRICAL RESULTS 125

••*•*• lick 50 Snaaary ••••••
 L«»«l 0
PV ■ 850.9243 EPPUB ■ 0.92 EP « 0.85 I ■ 0.87 S » 0.84 AGE » 14 B : 1
PV - 834.0000 EPPUB ■ 1.00 EP - 0.83 I - 0.69 S - 0.94 IGE • 0 H : 2
PV ■ 770.0000 EPPUB m 1.00 EP - 0.77 I ■ 0.76 S » 0.78 AGE » 0 H : 0
PV ■ 751.0000 EPPUB m 1.00 EP » 0.75 I ■ 0.75 S a •*•• AGE ■ 0 H : *
 U»«l 1
PV - 904.9776 EPPUB m 0.98 EP - 0.90 ■ - 0.85 S - 1.00 AGE - 8 B : (and 1 2)
PV - 894.9699 EPPUB « 0.97 EP - 0.89 ■ - 0.80 5 « 1.00 AGE ■ 6 I : (and 0 1)
PV - 882.8600 EPPUB ■ 0.85 EP - 0.88 I ■ 1.00 S - 0.87 AGE - 4 E : (or 0 2)
PV » 847.0000 EPPUB B 1.00 EP - 0.85 I • 0.67 8 - 0.90 AGE - 0 H : (or 1 (not 0))
 L«T«1 2
PV - 866.9055 EPPUB ■ 0.91 EP ■ 0.87 I ■ 0.75 S - 0.91 AGE - 2 E (or (and 1 2) (or 1 2))
PV - 819.0000 EPPUB m 1.00 EP - 0.82 I « 1.00 S - 0.78 AGE - 0 I (or 0 (and 1 2))
PV ■ 728.0000 EPPUB m 1.00 EP ■ 0.73 I ■ •••* S - 0.73 AGE - 0 E (or 0 (or 1 2))
*** »»in* ■ (37 / 50) 74.00* Long tora ■ (37 / 50) 74.00X •*»

••••*• tic* loo s imaary ******
 L«T«1 0
PV - 898.9243 EPPUB ■ 0.92 EP « 0.90 I * 0.90 S » 0.90 AGE « 14 B 1
PV ■ 876.0000 EPPUB m 1.00 EP ■ 0.87 ■ » 0.81 S - 0.94 AGE - 0 E 2
PV « 850.0000 EPPUB « 1.00 EP ■ 0.85 ■ - 0.85 S « *••• AGE » 0 B f
PV - 844.0000 EPPUB m 1.00 EP - 0.84 ■ - 0.88 S - 0.81 AGE - 0 E 0
 L«T«1 1
PV * 931.9699 EPPUB ■ 0.97 EP - 0.93 I - 0.90 S » 1.00 AGE ■ 6 B (and 0 1)
PV - 927.9801 EPPUB ■ 0.98 EP - 0.93 I - 0.89 S ■ 1.00 AGE ■ 9 B (and 1 2)
PV - 914.0000 EPPUB m 1.00 EP » 0.91 I ■ 0.91 S - 0.93 AGE - 3 B (and 2 (not 0))
PV « 911.8500 EPPUB m 0.85 EP ■ 0.91 I - 1.00 S - 0.88 AGE " 4 B (or 0 2)
 L«T«1 2
PV « 962.9706 EPPUB ■ 0.97 EP - 0.96 I » 0.94 S * 1.00 AGE ■ 19 B (or (and 0 1) (and 1 2))
PV « 947.90SS EPPUB » 0.91 EP - 0.95 I ■ 0.96 S - 0.92 AGE - 2 E (and (or 0 2) (or 1 (not 2)))
PV ■ 945.7935 EPPUB ■ 0.79 EP ■ 0.95 ■ - 0.96 S - 0.92 AGE - 1 E (or (and 0 1) (and 2 (not 0)))
PV - 940.0000 EPPUB m 1.00 EP ■ 0.94 I ■ 0.94 S - 0.94 AGE « 0 E (and (or 0 1) (or 0 2))
••• Rainf * (45 / 50) 90.00% Long ton » (82 / 100) 82.002 •••

Su—in y ••••••
 LOTOI 0
PV ■ 925.9243 EPPUB ■ 0.92 EP - 0.93 ■ - 0.93 S - 0.92 AGE - 14 B 1
PV » 891.0000 EPPUB » 1.00 EP - 0.89 I - 0.89 S - 0.89 AGE - 0 B 0
PV » 886.0000 EPPUB m 1.00 EP - 0.89 I - 0.95 S - 0.80 AGE - 0 E (not 2)
PV - 886.0000 EPPUB m 1.00 EP - 0.89 I - 0.89 S » •••• AGE ■ 0 E t
 L«TOl 1
PV - 927.0000 EPPUB m 1.00 EP - 0.93 I - 0.96 S - 0.91 AGE - 0 E (or 1 (not 2))
PV » 922.9699 EPPUB m 0.97 EP - 0.92 I - 0.91 S - 0.95 AGE ■ 6 I (and 0 1)
PV - 921.0000 EPPUB m 1.00 EP - 0.92 I - 0.92 S - 0.92 AGE - 0 ■ (or 1 (not 0))
PV » 917.0000 EPPUB m 1.00 EP - 0.92 I » 0.95 S - 0.90 AGE - 0 I (or 0 1)
 LOTOI 2
PV - 931.9491 EPPUB m 0.95 EP - 0.93 ■ - 0.92 S - 0.95 AGE - 166 B (or (and 0 1) (and 1 2))
PV - 928.9055 EPPUB m 0.91 EP ■ 0.93 I - 0.93 S - 0.93 AGE » 2 B (and (or 0 2) (or 1 (not 2)))
PV - 921.0000 EPPUB m 1.00 EP - 0.92 I ■ 0.90 S ■ 0.94 AGE » 0 E (and (or 0 1) (or 0 2))
PV - 916.8500 EPPUB m 0.85 EP ■ 0.92 I ■ 0.91 S - 0.92 AGE - 4 E (or (and 0 1) (and 2 (not 0)))
••* l*inf ■ (46 / 60) 92.00t L ong ton ■ (219 / 250) 87.60S •*•

Figure 49: A sample run of the GTRL algorithm.

126 CHAPTER 7. A GENERATE-AND-TEST ALGORITHM

er

100
PA

Figure 50: Performance versus parameter value PA for Task 8.

plotting average reinforcement per tick on 100 runs of length 3000 against each of

the remaining parameters, PA, R, and H.

The expected reinforcement is maximized at a low value of PA, the promotion

age of candidate hypotheses, because it is relatively easy to discriminate between

good and bad actions in Task 8. When the probabilities of receiving reinforcement

value 1 are closer to one another, as they are in the tasks discussed in the next

section, it becomes necessary to use higher values of PA. Because this task (and all

of the others discussed in this chapter) is stationary, the only reason to have a low

value of R, the inverse of the rate at which new hypotheses are generated, is if the

function is very difficult and hypothesis list is too small to hold all subexpressions

at once. This is not the case for Task 8, so high values of R are desirable. Finally,

performance increases with the length of the hypothesis lists, H, in every task.

Because this task is relatively easy, however, the correct answer is usually found

fairly quickly with even small values of H, so the increase is not dramatic (this is

evidenced by the small range of er in Figure 52.)

7.9. EMPIRICAL RESULTS 127

200

R

Figure 51: Performance versus parameter value R for Task 8.

H

Figure 52: Performance versus parameter value H for Task 8.

128 CHAPTER 7. A GENERATE-AND-TEST ALGORITHM

Task/Par am PA R H Results
5
6
7

35 200 30
10 100 30
45 110 20

.5648

.7879

.7877

Table 8: Best parameter values for GTRL on Tasks 5, 6, and 7 from Chapter 6.

7.9.3 Comparison with Other Algorithms

The GTRL algorithm was tested on Tasks 5, 6, and 7 from Chapter 6. The best values

of the parameters for each task were determined through extensive testing, and are

shown in Table 8. Some of the values are arbitrarily cut off where the parameter

testing stopped. For instance, performance on Task 5 might be improved with higher

values of PA and performance on Task 6 would be improved with higher values of H.

The average reinforcement per tick of executing GTRL at these parameter settings

on 100 runs of length 3000 are shown in the final column of the table.

Figure 53 is a modified version of Figure 42, with the results of the GTRL al-

gorithm included with those of the algorithms of Chapter 6 for Tasks 5, 6, and 7.

On Tasks 5 and 6, the GTRL algorithm performs significantly better than the LARC,

LARC+, and BP algorithms, but not as well as IE, IEKDNF, or LARCKDNF. Finally,

on Task 7, the real advantage of GTRL is illustrated. On a task with a large number

of inputs, GTRL works efficiently and is significantly outperformed only by IEKDNF.

The learning curves of GTRL on each of the tasks are shown in Figures 54, 55

and 56. They are superimposed on the learning curves of the algorithms tested in

Chapter 6; the GTRL curves are drawn in bold lines.

This comparison is, to some degree, unfair, because the GTRL algorithm is de-

signed for nonstationary environments. We can see in the learning curves that,

although it improves quickly early in run, it does not reach as high a steady-state

level of performance as the other algorithms. It does not converge to a fixed state,

because it is always entertaining new competing hypotheses. This flexibility causes

a large decrease in performance. If the GTRL algorithm is to be applied in a domain

in which changes, if any, are expected to take place near the beginning of a run,

7.9. EMPIRICAL RESULTS 129

TASK 5 TASK 6

LARCKDNF

LARC

LARCKDNF

TASK 7 IEKDNF

GTRL

LARC

LARC+

Figure 53: Significance of GTRL results on Tasks 5, 6, and 7, compared with the
results of the algorithms of Chapter 6.

130 CHAPTER 7. A GENERATE-AND-TEST ALGORITHM

er

10 15 20 25

bucket of 100 ticks

y iekdnf
£- opt

ie
larckdnf

o*^ random

Figure 54: GTRL learning curve for Task 5 (bold) compared with the algorithms of
Chapter 6.

er

5 10 15 20 25
. bucket of 100 ticks

opt
ie

«* iekdnf
larckdnf

random
30

Figure 55: GTRL learning curve for Task 6 (bold) compared with the algorithms of
Chapter 6.

7.10. CONCLUSIONS AND EXTENSIONS 131

er

0.82

0.8

0.78

0.76'

0.74'

0.72'

0.68

opt

10 15 20 25

random
bucket of 100 ticks

Figure 56: GTRL learning curve for Task 7 (bold) compared with the algorithms of
Chapter 6.

performance can be improved by decreasing over time the rate at which new can-

didate hypotheses are generated. This will cause the algorithm to spend less time

experimenting and more time acting on the basis of known good hypotheses.

7.10 Conclusions and Extensions

We have seen that the GTRL algorithm can be used to learn a variety of Boolean

function classes with varying degrees of effectiveness and efficiency. This chap-

ter describes only a particular instance of a general, dynamic generate-and-test

method—there are a number of other possible variations.

The algorithm is designed so that other search heuristics may be easily accommo-

dated. An example of another, potentially useful, heuristic is to combine hypotheses

that are highly correlated with the optimal hypothesis. One way to implement this

heuristic would be to run a linear-association algorithm, such as LARC, over the in-

put bits and the outputs of the newly-created hypotheses, then make combinations

of those hypotheses that evolve large weights. It is not immediately apparent how

this would compare to using the N and S heuristics.

132 CHAPTER 7. A GENERATE-AND-TEST ALGORITHM

Another possible extension would be to add genetically-motivated operators,

such as crossover and mutation, to the set of search operators. Many genetic meth-

ods are concerned only with the performance of the final result so this extension

would have to be made carefully in order to preserve good on-line performance.

Chapter 8

Learning Action Maps with State

All of the algorithms that we have considered thus far are capable of learning only

actions maps that are pure, instantaneous functions of their inputs. It is more

generally the case, however, that an agent's actions must depend on the past history

of input values in order to be effective. By storing information about past inputs,

the agent is able to induce a finer partition on the set of world states, allowing it to

make more discriminations and to tailor its actions more appropriately to the state

of the world.

Perhaps the simplest way to achieve this finer-grained historical view of the world

is to simply remember all input instances from the last k ticks and present them in

parallel to the behavior-learning algorithm. This method has two drawbacks: it is

not possible for actions to depend on conditions that reach back arbitrarily far in

history and the algorithmic complexity increases considerably as the length of the

available history is increased.

This chapter will present an alternative approach, based on the GTRL algorithm,

which can efficiently learn simple action maps with temporal dependencies that go

arbitrarily far back in history.

133

134 CHAPTER 8. LEARNING ACTION MAPS WITH STATE

" _TL r

SR(a,b) r
Figure 57: Timing diagram for a set-reset flip-flop.

8.1 Set-Reset

A common component in hardware logic design is a set-reset (SR) flip-flop.1 It has

two input lines, designated set and reset, a clock, and an output line. Whenever the

clock is triggered, if the set line is high, then the output of the unit is high; else, if

the reset line is high, the output of the unit is low; finally, if both input lines are

low, the output of the unit remains the same as it was during the previous clock

cycle. The value of the output is held in the determined state until the next clock

tick.

The behavior of an SR flip-flop can be described logically in terms of the follow-

ing binary Boolean operator

SR(a, b) = a V (-.& A «SR(a, b)) ,

where • is the temporal operator "last." Figure 57 shows a timing diagram, in

which the top two lines represent a time-history of the values of wires a and 6 and

the bottom line represents the time history of the values of SR(a, 6), the output of

a set-reset flip-flop whose inputs are wires a and b.

In the logical definition of SR as a Boolean operator, no initial value is specified.

This problem is dealt with by adding a third logical value, ±, which means, intu-

itively, "undefined." When an expression of the form SR(a, 6) is to be evaluated for

the first time, it is assumed that the value of «SR(a, b) is ±. The value _L combines

Components of this kind are also commonly referred to as RS (reset-set) flip-flops in the logic-
design literature.

8.2. USING SR IN GTRL 135

with the other logical values as follows:

true V -L = true

false V± = J_

iVl = 1

true A JL = ±

false A ± = false

_LA± = ±

i± = ±

Thus, the expression SR(a,6) will have value J_ until either a = true, in which

case SR(a, 6) = true V ... = true, oro= false and b = true, in which case

SR(a, b) = false V (false A ±) = false.

8.2 Using SR in GTRL

In the original version of the GTRL algorithm, the hypotheses were pure Boolean

functions of the input bits. This section describes an extended version of that

algorithm, called GTRL-S, which has simple sequential networks as hypotheses.

8.2.1 Hypotheses

The GTRL-S algorithm is structured in exactly the same way as the GTRL algorithm.

The main difference is that SR is added as another binary hypothesis-combination

operator. This allows hypotheses such as

SR(-n&o, &i A hi) A (&! V SR(SR(6o, &i), ^b2) ,

which represents the sequential network shown in Figure 58, to be constructed.

This operator does not allow every possible sequential circuit to be generated,

however. In the pure-function case it was not necessary to have a negation operator

because DeMorgan's laws guarantee that having access to the negated atoms is

136 CHAPTER 8. LEARNING ACTION MAPS WITH STATE

bo j c

1
SR

b> 1 H-J

SR r^-^
 C

SR

E>

Figure 58: A sample sequential network, described by SR(-i&o>&i A b2) A (6j V
SR(SR(6o,6i),-&2)

►—c

SR

Figure 59: This circuit generates the sequence 0,1,0,1,...; because it has feedback,
it cannot be constructed by the GTRL-S algorithm.

sufficient to generate any Boolean function. Unfortunately, negation cannot be

moved past the SR operator in any general way, so, for instance, a sequential circuit

equivalent to -iSR(t'o,ti) cannot be generated by applications of the SR operator

to atoms and their negations. This deficiency can be simply remedied by adding a

unary negation operator or by adding an operator NSR, which is defined as

NSR(a,6) = -1SR(a,6) .

Another deficiency is that the construction of sequential networks with feedback

is not allowed. Thus, the circuit shown in Figure 59, which generates the sequence

0,1,0,1,..., cannot be constructed. For agents embedded in realistic environments,

this limitation may not be too great in practice. We would not, in general, expect

8.2. USING SR IN GTRL 137

such agents to have to make state changes that are not a function of changes in the

world that are reflected in the agent's input vector. There is one additional limita-

tion that is both more serious and more easily corrected. With the semantics of SR

defined as they are, it is not possible to construct an expression equivalent to »a.

One way to solve this problem would be to redefine SR(a, b) as •aV(«-ifcA«SR(a, b)).

In that case, «a could be expressed as SR(a, ->a), but the search heuristics to be

used in GTRL-S (described in Section 8.2.3) would no longer be applicable. Another

option would be to add • as a unary operator, along with negation. This is a rea-

sonable course of action; it is not followed in this chapter, however, both because it

would complicate the exposition and because no appropriate search heuristics for

the last and negation operators are known.

In addition to the syntactic expression describing the network and the necessary

statistics (discussed in Section 7.3), a hypothesis also contains the state of each

of its SR components. When a new hypothesis is created with SR as the top-level

operator, that component's state is set to _L The state of SR components occurring

in the operands is copied from the operand hypotheses. In order to keep all state

values up to date, a new state-update phase is added to the update function. In

the state-update phase, the new state of each SR component of each hypothesis is

calculated as a function of the input vector and the old state, then stored back into

the hypothesis. The result of this calculation may be 1, 0, or J_.

Expressions containing SR operators may be partially simplified using an ex-

tension of the simplification procedure used for standard Boolean expressions. This

extended simplifier is also described in Appendix B.

8.2.2 Statistics

The statistical modules for GTRL-S differ from GTRL only when satisfies(i, h) returns

the value ±. In that case, none of the statistics is updated. Once satisfies(i, h)

becomes defined for any input i, it will remain defined for every input, so this has

no effect on the distribution of the instances for which statistics are collected, just

on when the collection of statistics begins.

138 CHAPTER 8. LEARNING ACTION MAPS WITH STATE

8.2.3 Search Heuristics

The problem of guiding the search for generating sequential networks is considerably

more difficult than for pure functional networks. Statistics collected about the

performance of expressions as generators of actions in the world are not necessarily a

strong indication of their performance as the set or reset signal of an SR component.

They can still provide some guidance, however.

Recall the logical definition of SR as

SR(a, 6) = a V (-16 A »SR(a, b)) .

First, we can see that a —► SR(a, b) and that SR(a, b) —► (a V ->6). The first

observation should guide us to choose set operands that are sufficient for the target

hypothesis. The second observation is slightly more complex, due to the fact that

set takes precedence over reset, but it makes it reasonable to choose reset operands

whose negations are necessary for the target hypothesis. From these observations

we can derive the following heuristic:

When making a set-reset hypothesis, use a set operand that has a h^igh

value of sufficiency and a react operand whose negation has a high value

of necessity. !
?

8.2.4 Complexity

The computational complexity of the GTRL-S algorithm is the same as that of GTRL,

which is discussed in Section 7.7. The only additional work performed by GTRL-S

is the state-update computation. It has complexity 0(L(H + C)2L) (assuming that

H and C are independent of level), which is of the same order as the statistical

updating phase that occurs in both algorithms.

8.3 Experiments with GTRL-S

This section documents experiments with GTRL-S in some simple domains that

require action mappings with state. There are no direct comparisons with other

8.3. EXPERIMENTS WITH GTRL-S 139

algorithms because no other comparable algorithms that learn action mappings

with state from reinforcement are known.

8.3.1 Lights and Buttons

The first domain of experimentation is very simple. It can be thought of as con-

sisting of two light-bulbs and two buttons. The input to the agent is a vector of

two bits, the first having value 1 if the first light bulb is on and the second having

value 1 if the second light bulb is on. The agent can generate two actions: action 0

causes the first button to be pressed and action 1 causes the second button to be

pressed. One or no lights will be on at each instance. The optimal action map is to

push the button corresponding to the light that is on if, in fact, a light is on. If no

lights are on, the optimal action is to push the button associated with the light that

was last on. A light is turned on on a given tick with probability pi—the particular

light is chosen randomly and equiprobably. Thus, the optimal hypothesis is simply

SR(&i,&o)-

Figure 60 shows parts of the trace of a sample run of the GTRL-S algorithm in the

simple lights and buttons domain, in which the correct action (as discussed above)

yields reinforcement value 1 with probability .9 and the incorrect action yields rein-

forcement value 1 with probability .1. A light comes on each tick with probability

.1. The first section of the trace shows the state of the algorithm after 100 ticks.

We can see that the correct hypothesis, SR(fci,&o)>2 has just been found and ap-

pears to be the best. After 200 ticks, we can see two recently-created hypotheses

being tested. They are found wanting, however. By tick 500, the original winning

hypothesis is still near the top of the list, surpassed only by another equivalent ex-

pression, SR(-i&o, _,6i). The GTRL-S algorithm works quite reliably on this problem

because the search heuristics provide good guidance. In the statistics of the atomic

hypotheses at level 0, it is easy to see that 6x is the most sufficient hypothesis and

->&o is the most necessary.

2The third value in the SR expressions of the printout indicates the stored value of the unit: t
for 1, nil for 0, and bottom for ± (which does not happen to occur in this trace.)

140 CHAPTER 8. LEARNING ACTION MAPS WITH STATE

•••*•• Tick 100 Smnurj •••*•*

 Unl 0
PV - 760.7848 EPPUB B 0.78 EP ■ 0.76 ■ ■ > 0.74 S - 0.80 AGE - 8 I: 1
PV » 734.8910 EPPUB » 0.89 EP * 0.73 1 > > 0.73 s - -1.00 AGE ■ 15 1: f
PV ■ 700.8619 EPPUB * 0.86 EP m 0.70 ■ ■ > 1.00 S " 0.67 AGE - 21 B: (not 0)

PV ■ 641.0000 EPPUB ■ 1.00 EP m 0.64 I > > 0.71 8 - 0.00 AGE - 0 H: 0
PV - 608.0000 EPPUB ■ 1.00 EP m 0.61 I • ■ -1.00 s ■ 0.61 AGE - 1 I: t
PV ■ 884.0000 EPPUB m 1.00 EP m 0.58 I > ■ 0.50 s ■ 0.59 AGE > 0 I: (not 1)

 UTII 1
PV » 793.9776 EPPUB u 0.98 EP m 0.79 1 ■ ■ 0.79 s - 1.00 AGE - 8 I: (■r 1 0 nil]
PV - 724.9285 EPPUB m 0.93 EP m 0.72 I ■ ■ -1.00 s ■ 0.72 AGE - 8 H: (>r (not 0) 1 t)
Pf « 715.0000 EPPUB m 1.00 EP m 0.71 I ■ > -1.00 s » 0.71 AGE ■ 0 H: (or (not 0) (not D)
PV ■ 710.0000 EPPUB u 1.00 EP m 0.71 I ■ ' 0.72 s - 0.50 AGE - 0 H: (»r 1 (not 0) nil)
PV ■ 704.0000 EPPUB m 1.00 EP m 0.70 ■ > > -1.00 s ■ 0.70 AGE > 0 H: (sr (not 1) 0 t)

PV » 654.0000 EPPUB m 1.00 EP m 0.6S I > > 0.67 s « 0.50 AGE - 0 I: (or 0 1)
••• Boinf » (67 / 100) 67.00t Lonj ; tor» - (67 / 100) 67.00X •••

•••••• Tick 200 Si
▼•1 0

ury
 L«
PV » 815.8619 EPPUB » 0.86 EP 0.82 I > • 0.89 s - 0.81 AGE - 21 I: (not 0)
PV - 774.7848 EPPUB m 0.78 EP 0.77 1 > • 0.77 s - 0.82 AGE - 8 I: 1
PV ■ 774.0000 EPPUB ■ 1.00 EP 0.77 I » ■ -1.00 s ■ 0.77 AGE - 1 E: t
PV « 758.0000 EPPUB ■ 1.00 EP 0.76 I > > 0.33 s - 0.77 AGE « 0 H: (not 1)
PV ■ 752.8910 EPPUB m 0.89 EP 0.76 I " ■ 0.75 s - -1.00 AGE - 15 H: t
PV - 692.0000 EPPUB « 1.00 EP 0.69 I > ■ 0.74 s - 0.00 AGE - 0 I: 0
 L«Y«1 1
PV - 902.9778 EPPUB m 0.98 EP 0.90 I > • 0.86 s - 0.91 AGE - 25 B: (or 1 (not 0))
PV * 898.9615 EPPUB * 0.96 EP 0.90 ■ > ■ 0.00 s - 0.91 AGE - 27 H: (or 0 (not 1))
PV ■ 870.9275 EPPUB m 0.93 EP 0.87 ■ > • 0.82 s - 0.92 AGE - 48 H: (»r 10t)
PV ■ 849.9285 EPPUB m 0.93 EP 0.85 I > » -1.00 s - 0.85 AGE - 8 I: (»r (not 0) 1 t)
PV ■ 848.0000 EPPUB m 1.00 EP 0.85 I > ■ -1.00 s - 0.85 AGE - 0 B: (or (not 0) (not D)
PV - 812.8632 EPPUB m 0.86 EP 0.81 I > > 0.81 s * 0.83 AGE - 8 B: (and 1 (not 0))
•• Rainf ■ (86 / too) 86.00% Lon, ; t«za > • { 153 / 200) 76.SOt ••

•••*•• Tick 600 Soaaary •••***

 L«»«l 0- X
PV ■ 859.8619 EPPUB m 0.86 EP m 0.86 I > • 0.89 s ■ 0.86 AGE - 21 I: (not 0)
PV - 844.7848 EPPUB m 0.78 EP m 0.84 I > • 0.84 s - 0.90 AGE - 8 B: 1
PV ■ 844.0000 EPPUB m 1.00 EP m 0.84 ■ > ■ -1.00 s - 0.84 AGE - 1 B: t
PV ■ 830.0000 EPPUB m 1.00 EP m 0.83 I > • 0.26 s - 0.84 AGE - 0 B: (not 1)
PV - 825.8910 EPPUB m 0.89 EP m 0.82 I > • 0.82 s - -1.00 AGE - 16 B: 1
PV « 797.0000 EPPUB ■ 1.00 EP m 0.80 I • • 0.82 s - 0.17 AGE - 0 fl: 0
 Unl 1
PV - 913.9344 EPPUB ■ 0.93 EP m 0.91 I ■ ■ 0.67 8 - 0.92 AGE - 43 B: (sr (not 0) (not 1) t)

PV - 898.9231 EPPUB m 0.92 EP - 0.90 I ■ • 0.86 s - 0.92 AGE - 245 B: (ar 10t)
PV - 890.9468 EPPUB - 0.95 EP ■ 0.89 I > • 0.88 s ■ 0.89 AGE - 41 B: (or 1 (not 0))
PV - 890.9335 EPPUB m 0.93 EP ■ 0.89 ■ ' « -1.00 S ■ 0.89 AGE - 33 I: (sr (not 1) 0 t>
PV " 886.9838 EPPUB m 0.98 EP * 0.89 ■ > • 0.00 s - 0.89 AGE - 11 B: (■r (not 1) (not 0) t)
PV ■ 881.9615 EPPUB m 0.96 EP « 0.68 I < ■ 0.00 s ■ 0.89 AGE - 27 B: (or 0 (not D)
••• loinf ■ (89 / 100) 89.00t Lon J t«za - (418 / 500) 83.60t •••

Figure 60: A sample run of the GTRL-S algorithm on the simple lights and buttons
problem

8.3. EXPERIMENTS WITH GTRL-S 141

8.3.2 Many Lights and Buttons

The lights-arid-buttons domain described in Section 8.3.1 can be easily extended

to have an arbitrary number, M, of lights and buttons. If we let each input bit

correspond to a light and each output bit correspond to the pressing of a button,

we have an environment with M input and M output bits. The agent is never

rewarded for pressing more than one button at once.

The more complex lights-and-buttons problem can be solved by using the CAS-

CADE method in conjunction with GTRL-S, with one copy of the GTRL-S algorithm

for each bit of output (corresponding to each button.) Figure 61 shows excerpts

from a sample run with two lights and two buttons (this differs from the domain

described in the previous section in that there are two output bits rather than only

one.) The first two levels belong to the instance of GTRL-S for the first output

bit and the second two levels belong to the second instance of GTRL-S. After the

first 100 ticks, neither instance has found the correct hypothesis and the perfor-

mance is quite poor. By tick 200, however, the best hypothesis for the first bit

is SR(-i&i,-i6o), which is equivalent to SR(6o,&i), the correct function. The best

hypothesis for the second bit is SR(fei, &o), which is also correct. Again, it is easy to

verify that the necessity and sufficiency heuristics are a good guide for the search.

The search heuristics for SR fail us when we wish to extend this problem to a

larger number of lights and buttons using a cascade of 3-level instances of GTRL-S.

When there are three lights and buttons, the optimal function for the first bit can

be most simply expressed as SR(&o, &i V 62)- In order to synthesize this expression,

the expression -ib1A->b2 must be available at the previous level. For that to happen,

-ibi and ->b2 must be highly sufficient, which is false, in general. Thus, the only

way to learn this function is to generate all sub-expressions exhaustively, which is

computationally prohibitive.

142 CHAPTER 8. LEARNING ACTION MAPS WITH STATE

•••••• Tick 100 Stuaary ••••••

■L«T«1 0

PV « • 329.7308 EPPUB • ■ 0.73 EP > > 0.33 I > > 0.29 8 ■ > 1.00 AGE > > 22 I 0
PV i ' 276.0000 EPPUB > > 1.00 EP > > 0.28 I > ' 0.28 S > ' -1.00 AGE > 3 H 1
Pf > ■ 260.0000 EPPUB > ■ 1.00 EP ■ > 0.26 1 > ■ 0.27 S > > 0.00 AGE > 1 I 1
 ■Unl 1
PV ■ > 344.4019 EPPUB > • 0.40 EP ■ > 0.34 I > • 0.29 S • > 0.83 AGE > > 40 I (or 0 1)
P? " • 328.0000 EPPUB > ■ 1.00 EP > • 0.33 I > > 0.26 S > ■ 1.00 AGE • ■ o ■ (ar 0 (not 1) nil)
PV > > 291.0000 EPPUB > ■ 1.00 EP > > 0.29 I • ■ 0.29 S > ■ -1.00 AGE • • 0 I (and 0 1)
PV > • 260.0000 EPPUB > ' 1.00 EP . • 0.26 I > > 0.26 S • > 0.00 AGE > 0 E (ar 1 (not 0) nil)
 ■Unl 0
PV " > 428.5673 EPPUB • ■ 0.57 EP ■ ' 0.43 I > ■ 0.86 S > > 0.33 AGE • > 51 I (not 2)
PV • > 419.5131 EPPUB > > 0.51 EP > ' 0.42 ■ > ■ 0.42 S • ■ -1.00 AGE > 7 I 1
PV > > 411.6576 EPPUB ■ > 0.66 EP > > 0.41 ■ > ■ 0.42 S > > 0.33 AGE • 2 H 1
PV ■ ■ 370.0000 EPPUB ■ • 1.00 EP > ■ 0.37 I ■ • 0.83 S > > 0.33 AGE > > 0 H (not 0)
PV « • 319.0000 EPPUB > > 1.00 EP • • 0.32 I > • -1.00 S > > 0.32 AGE > > 0 H t
PV ■ > 319.0000 EPPUB > « 1.00 EP > ■ 0.32 1 > ■ -1.00 s > > 0.32 AGE > > 0 B (not 1)
PV ■ ■ 297.0000 EPPUB > ■ 1.00 EP " ■ 0.30 ■ > ■ 0.32 s > > 0.00 AGE > 0 B 0
PV ■ > 87.0000 EPPUB > ' 1.00 EP ■ < 0.09 ■ > ■ 0.06 s > ' 0.17 AGE > 0 I 2
 -La»al 1
PV ' ■ 372.7693 EPPUB • • 0.77 EP > « 0.37 I > • 1.00 s > > 0.30 AGE > 6 H (and (not 0) (not 2))
PV • • 353.0000 EPPUB > ■ 1.00 EP ■ > 0.35 ■ > ■ 1.00 s > > 0.28 AGE > > 0 I (ar (not 0) 2 t)
PV « ' 341.0000 EPPUB > ' 1.00 EP i > 0.34 ■ > ■ 1.00 s > > 0.27 AGE • > 0 I (or (not 0) (not 2))
PV » ' 327.0000 EPPUB > • 1.00 EP i > 0.33 ■ > > 1.00 s > ' 0.2S AGE > > 0 H (ar (not 2) 0 t)
••• Bainf » (35 / 100) 35 00% Lonj ; tan ■ ■ (3B / 1«)) 35.00% •••

•••1 '** Tick 200 Sm
■UT«1 0

■tar; ••< >*»*
—
PV > > 563.5973 EPPUB > > 0.60 EP ■ > 0.56 I > ■ 1.00 s > ■ 0.55 AGE > . 63 H (not 1)
PV • > 538.0000 EPPUB > ■ 1.00 EP « • 0.54 I > ■ -1.00 s > > 0.54 AGE > ' 1 B t
PV > ' 495.0000 EPPUB > • 1.00 EP > ' 0.49 I > ■ 0.00 s ■ > 0.51 AGE > • 0 I (not 0)
PV " > 356.7308 EPPUB > ■ 0.73 EP . ' 0.36 I > > 0.30 s ■ » 0.76 AGE > ■ 22 H : 0
PV > > 294.0000 EPPUB > ■ 1.00 EP ■ ■ 0.29 I > ' 0.29 s > ■ -1.00 AGE > > 3 B : f
PV • • 256.0000 EPPUB > ' 1.00 EP ■ > 0.26 1 > > 0.26 S ' > 0.00 AGE < > 1 B : 1
 ■Unl 1
PV > ■ 511.9743 EPPUB » ' 0.97 EP > • 0.51 I > « 1.00 s > • 0.49 AGE > 7 B : (ar (not 1) (not 0) t
PV " ■ 606.7267 EPPUB > ' 0.73 EP ■ ■ 0.51 I > • 1.00 s < > 0.49 AGE • • 19 E : (and (not 0) (not 1))
PV • > 475.0000 EPPUB > ■ 1.00 EP ■ • 0.47 ■ > • -1.00 s > ' 0.47 AGE > ' 0 B : (ar (not 0) 1 t)
PV • > 468.0000 EPPUB > > 1.00 EP ■ • 0.47 ■ > ■ -1.00 s > > 0.47 AGE ■ > 0 I : (ar (not 1) 0 t)
 ■La»al 0
PV > > 555.6576 EPPUB > ' 0.66 EP • • 0.56 I > • 0.55 s > ■ 0.67 AGE > ■ 2 B : 1
PV ■ ■ 549.6988 EPPUB ■ » 0.70 EP • • 0.55 I > > 0.55 s > » -1.00 AGE < > 15 H : f
PV • ■ 517.0000 KPPUB « ■ 1.00 EP < • 0.52 I > > 0.53 s > > 0.00 AGE ■ > 0 B : 0
PV ' ■ 506.5251 EPPUB > ■ 0.53 EP • • 0.51 I < • 0.65 s > • 0.34 AGE > • 68 B : (not 2)
PV > • 349.0000 EPPUB > ' 1.00 EP • ' 0.35 ■ < • 0.69 s > • 0.30 AGE ■ > 0 B : (not 0)
PV " > 296.0000 EPPUB > » 1.00 EP < ' 0.30 I > ■ -1.00 s < ■ 0.30 AGE < 0 I : t
PV ■ > 272.0000 EPPUB > ■ 1.00 EP • ■ 0.27 I ■ ■ -1.00 s > • 0.27 AGE ■ • 0 B : (not 1)
PV ■ > 137.0000 EPPUB • ■ 1.00 EP • • 0.14 ■ ' ■ 0.11 s < • 0.16 AGE < • 0 B : 2
 -Laval 1
PV > ■ «04.5066 EPPUB > » 0.51 EP > • 0.60 I > ■ 0.73 S ■ • 0.29 AGE > ■ 28 B : (ar 1 0 nil)
PV « • 597.7138 EPPUB > » 0.71 EP < • 0.60 ■ > • 0.59 s ■ • 0.80 AGE > • 57 fl : (ar 1 2 nil)
PV " ' 594.0000 EPPUB > ■ 1.00 EP ■ • 0.59 I < ■ 0.58 s > • 1.00 AGE < • 0 B : (and 1 (not 2))
PV ■ > 587.0000 EPPUB > « 1.00 EP > ' 0.59 ■ > • 0.58 S ' ■ 0.75 AGE > 0 B : (and 1 (not 0})
••• fcainf ■ (50 / 100) 60 .0« 1 .on I tar» ■ (86 / 2« » 42. 50% •••

Figure 61: A sample run of the GTRL-S algorithm on the two-bit lights and buttons
problem. Only the 4 most predictive hypotheses are shown at each non-atomic
level.

8.4. CONCLUSION 143

8.4 Conclusion

Although the approach embodied in GTRL-S is capable of learning some simple

action maps with state, it does not hold much promise for more complex cases. In

such cases, it may, in fact, be necessary to learn a state-transition model of the

world and values of the world states, using a combination of Rivest and Schapire's

[56] method for learning models with hidden state and Sutton's [72] or Whitehead

and Ballard's [80] method for "compiling" transition models into action maps. This

will be a difficult job—currently available methods for learning models with hidden

state only work in deterministic worlds. Even if they did work in non-deterministic

worlds, they attempt to model every aspect of the world's state transitions. In

realistic environments, there will be many more aspects of the world state than the

agent can track, and its choice of which world states to represent must be guided

by reinforcement, so that it can learn to make only the "important" distinctions.

Drescher's work on generating "synthetic items" [18] is a promising step in this

direction. His "schema mechanism" attempts to learn models of the world that will

enable problem solving. When it is unsuccessful at discovering which preconditions

will cause a particular action to have a particular result, it "reifies" that set of

preconditions as an "item" and attempts to discover tests for its truth or falsity. In

many cases the reified item turns out to be a particular aspect of the state of the

world that is hidden from the agent.

Chapter 9

Delayed Reinforcement

Until now, we have only considered algorithms for learning to act in environments

in which local reinforcement is generated each tick, giving the agent all of the

information it will ever get about the success or failure of the action it just took.

This is a simple instance of the more general case, in which actions taken at a

particular time may not be rewarded or punished until some time in the future.

This chapter surveys some existing approaches to the problem of learning from

delayed reinforcement, focusing on the use of temporal difference methods [71], such

as Sutton's adaptive heuristic critic method [70] and Watkins' Q-learning method

[78]. It will be shown how these methods can be combined with the pure function-

learning algorithms presented in previous chapters to create a variety of systems

that can learn from delayed reinforcement.

9.1 Q Learning

There are well-known dynamic programming methods, such as policy improvement

[57] that can be used for computing the optimal action mapping for an agent, given

a complete state-transition model of the world. Watkins has developed a method

for learning from delayed reinforcement that he describes [78] as "incremental dy-

namic programming by a Monte Carlo method: the agent's experience—the state-

145

146 CHAPTER 9. DELAYED REINFORCEMENT

Algorithm 16 (Q) The initial state s0 is an array indexed by the set of input states
and the set of actions, whose elements are initialized to some constant value.

u(s, i, a, r) = i[t', a'] = (1 - a)s[i', a'] + a(r + fU(i))
e(s,i) = a such that s[i,a] is maximized

where i' and a' are the input and action values from tickt —1, 0 < or < 1, 0<7<1,
and U(i) = maxa{s[t,a]}.

Figure 62: The Q-leaming algorithm.

transitions and the rewards that the agent observes—are used in place of transition

and reward models."

Watkins' method is referred to as Q-learning because it is concerned with learn-

ing values of Q(i, a), where i is an input, a is an action, and Q(i, a) is the expected

discounted reward of talcing action a in input state i then continuing by following

the optimal policy. The agent's policy is always to execute, in input state i, the

action a for which its estimate of Q(i, a) is maximized. The Q algorithm is described

formally in Figure 62.

The initial state of the Q algorithm is simply the array of estimated Q values,

indexed by the input and action sets. To evaluate an input instance, z, the action,

a, that maximizes Q(i,a) is generated. The update function adjusts the estimated

Q value of the previous input and action in the direction of

r + fU(i) ,

which is the actual reinforcement received, r, plus a discounted estimate of the

value of the next state, 7t/(t). The function U(i) estimates the value of an input i

by returning the estimated Q value of the best action that can be taken from that

state. This update rule illustrates the concept of temporal difference learning, which

was formulated by Sutton [71]. Rather than waiting until a reinforcement value is

received and then propagating it back along the path of states that lead up to it,

each state is updated as it is encountered by using the discounted estimated value

of the next state as a component of the reinforcement. Initially, these estimated

9.2. Q-LEARNING AND INTERVAL ESTIMATION 147

values are meaningless, but as the agent experiences the world, they soon begin to

converge to the true values of the states.

Watkins does not specify what the initial estimated Q values should be. If the

value 0 is used and the optimal action values are positive, the algorithm will almost

certainly fail, because it always chooses the action with the highest Q value. As

soon as one action has positive value associated with it, it will be chosen forever

more, to the exclusion of the other actions. There are two simple solutions to this

problem. One is to perform random actions with a certain small probability. This

guarantees that the whole space will eventually be explored, but can take a long

time. Also, even if the best states are eventually reached, if they occur only rarely,

it may not have a significant effect on the Q values. Another solution is to set

the initial Q values to be higher than any of the actual Q values. This causes a

process similar to the operation of the IE algorithm, in which the actions are chosen

alternately until the Q values are driven down to the actual action values. If the

initial Q values are much too high, however, this process can take a long time; it

is effective only if a relatively tight upper bound on the action values is known a

priori.

As the agent gains experience in the world, the Q values begin to become true

reflections of the action-values of the states in the world, given that the optimal

policy is being executed. Watkins proved that, in fact, the Q values will converge

to the values of the actions under the optimal policy given, among other conditions,

that each input-action pair is experienced an infinite number of times.

9.2 Q-Learning and Interval Estimation

The Q algorithm, as presented above, does not guarantee that each input-action pair

will be sampled an infinite number of times. It is often the case that a particular

action has a high Q value in a given state early on and other actions in that state are

rarely, if ever, tried again. One approach to solving this problem (although it still

does not guarantee convergence) is to apply the basic idea of interval estimation,

148 CHAPTER 9. DELAYED REINFORCEMENT

Algorithm 17 (IEQ) The initial state is an array indexed by the set of input
states and the set of actions, whose elements are initial states of a normal or non-
parametric central-value estimator.

u(s, i, a, r) = s[i', a'] := update - stats(s[i'', a^, r + fU(i))
e(s,i) = a such that uba(s[i,a\) is maximized

where 0 < a < 1, 0 < 7 < 1, and U(i) = maxa{er(s[i,a])} (er is the expected
reinforcement of performing action a in state i).

Figure 63: The IEQ algorithm.

choosing the action with the highest upper bound on the underlying Q value. This

approach is embodied in the IEQ algorithm, shown in Figure 63.

This algorithm can use either a normal or non-parametric model to estimate the

expected action values. Using the normal distribution as a model can be dangerous,

however, because at the beginning of this process, the sample variance is often

0, which causes the confidence intervals to be degenerate. The normal and non-

parametric methods for generating confidence intervals were informally discussed in

Section 4.5.2 and are presented in detail in Appendix A.

The function U changes over time, making early reinforcement values no longer

representative of the current value of a particular action. This problem is already

dealt with, in part, by the nature of the bounded-space non-parametric techniques,

because only a sliding window of data is kept and used to generate upper bounds.

However, this does not guarantee that poor-looking actions will be taken periodically

in order to see if they have improved. One way of doing this is to decay the statistics,

periodically dropping old measurements out of the sliding windows, making them

smaller. A similar decay process can be used in the normal statistical model, as well.

Decaying the statistics will have the effect of increasing upper bounds, eventually

forcing the action to be re-executed. This method will keep the algorithm from

absolutely converging to the optimal policy, but the optimal policy can be closely

approximated by decreasing the decay rate over time. The IEQ algorithm has three

9.3. ADAPTIVE HEURISTIC CRITIC METHOD 149

parameters: 7, the discount factor, a, the size of the confidence intervals, and 6,

the decay rate.

The biggest practical improvement of IEQ over Q is that it is no longer necessary

to estimate the values of the states in order to generate appropriate initial values.

In the context of the Dyna architecture [72], Sutton has recently developed a similar

extension to Q-learning, called Dyna-Q+, in which a factor measuring uncertainty

about the results of actions is added to the Q values, giving a bonus to exploring

actions about which little is known.

9.3 Adaptive Heuristic Critic Method

Sutton [70,71] has developed a different approach of applying the temporal difference

method to learning from delayed reinforcement. Rather than learning the value of

every action in every input state, the adaptive heuristic critic (AHC) method learns

an evaluation function that maps input states into their expected discounted future

reinforcement values given that the agent executes the policy it has been executing.

One way of viewing this method is that the AHC module is learning to transduce

the delayed reinforcement signal into a local reinforcement signal that can be used

by any of the algorithms of the previous chapters. The algorithm used to learn

from the local reinforcement signal need only optimize the reinforcement received

on the next tick; such an algorithm is referred to as a local (as opposed to global)

learning algorithm. It is a requirement, however, that the local learning algorithm

be capable of learning in nonstationary environments, because the AHC module will

be learning a transduction that changes as the agent's policy changes.

The AHC method, in combined operation with an algorithm for learning from

local reinforcement, is formally described in Figure 64. There are two components

to the state of the AHC algorithm: the vectors v and c. The v vector contains, at

every tick, the current best estimate of the discounted future value of each state with

discount rate 7, given that the agent is executing the behavior that it is currently

executing. The c vector values represent the "activation" values of the states. States

that have been visited recently have high activation values and those that have not

150 CHAPTER 9. DELAYED REINFORCEMENT

Algorithm 18 (AHC) The initial state, s0, consists of three parts: two n-
dimensional vectors, c and v, and S[, the initial state of the local learning algorithm.

u(s, i, a, r) = for j := 0 to n do
c[j]:=t\c[j]

c[i'] := c^ + 1
vi := v[i]] vi' := v[i']
for j := 0 to n do

v\j] '= v[j] + a c[j] (r" + 7 vi - vi')
s, :=ut(st,i",a",v[i'])

e(s,i)= et(shi)

where i' and a! are the input and action values from tick t — 1; i", a", and r" are
from tick t — 2; n is the size of the input set; s/, U/ and t\ are the internal state,
the update function, and the evaluation function of the local learner; 0 < A < 1;
0 < 7 < 1; and 0 < a < 1.

Figure 64: The AHC algorithm.

been visited recently have low values. Each of these vectors is initialized to contain

0 values.

The update function first updates the activation values. Each element's activa-

tion is multiplied by A7, where 7 is the discounting rate and A is an independent

factor that controls the degree to which activation is spread backward from the

currently active state. Then, the activation of the state whose value is being up-

dated on this tick, state i\ is increased by 1. The values of states are adjusted in

proportion to their activations, so for A = 0, only the currently active state's value

is updated on each tick.

Next, the state values in vector v are updated. Each value v[j] is incremented by

the product of its activation, c[j], the learning rate, a, and the prediction difference,

r" - fv[i] - v[i'}. The quantity r[i'] is the estimated value of state i'. The quantity

r"+fv[i] is a one-step lookahead value of state i', computed as the sum of the global

value of state i' (as indicated by the reinforcement value r" of the previous tick) and

the discounted value of the next state, 7u[i]. Since the one-step lookahead value is

9.3. ADAPTIVE HEURISTIC CRITIC METHOD 151

a better estimate than the stored value, the difference between the two values can

be used as an error signal for updating the stored value. This updating method

efficiently propagates global reinforcement values back along the chain of actions

that lead to them, making the AHC algorithm another instance of the temporal

difference method.

Finally, the update function feeds a learning instance to the update function

of the local learning algorithm. The reason for updating the local learner two

ticks behind is that if a large reinforcement value is received, we would like it to

be reflected in the function learner as soon as possible. However, if a large r is

received at time t, it takes two more ticks to receive the data that will allow its

effect on v to be calculated. The algorithm would not be incorrect if it performed

si := m(si,i',a',v[i]) instead, but it would not respond to good or bad results the

first time they were encountered.

The AHC algorithm has no effect on the evaluation process and simply calls the

evaluation method of the local learning algorithm.

Sutton has shown [71] that, for the non-discounted case, the expected values

of the predictions found by the temporal difference method converge to the ideal

predictions if the data sequences are generated by Markov processes and the value

of parameter A equals 0. When A = 1, the temporal difference method generates

the same weight adjustments as the Widrow-Hoff rule. Of course, when the agent is

choosing actions that change the state of the world, the distributions of input data

change and these results do not necessarily hold.

Sutton's presentation of the AHC algorithm was combined with a version of the

LARC algorithm for local learning. The AHC method is presented here independent

of assumptions about the local learning algorithm. This way of breaking down

the problem is very useful, because it allows us to independently choose a local

reinforcement-learning algorithm that is appropriate for the sorts of environments

in which it will be run for use in combination with the AHC algorithm. In addition,

Sutton used linear association methods to store the values of v and c more efficiently.

In this version, the activation and state values are simply stored in a table, but it

152 CHAPTER 9. DELAYED REINFORCEMENT

is easy to see how a variety of more efficient (if less precise) associative storage

methods could be applied.

There have been a number of implementations of temporal difference algorithms

similar to AHC, but none have had a correct analysis of convergence results. The

AHC work grew out of the adaptive critic element (ACE) used by Barto, Sutton, and

Anderson [11].

Witten's [86] adaptive optimal controller algorithm computes state values as in

the AHC algorithm, but differs from Sutton's work in the way it is combined with

the local learner. This difference causes its performance to be significantly inferior

[70).

One of AI's most striking early successes was Samuel's checkers-playing program

[60,61]. In one of its learning modes, it learned an evaluation function for board po-

sitions from reinforcement. Although Samuel's learning procedure is very complex,

it can be closely approximated by the AHC algorithm with 7=1.

Another, more distantly related, learning method is Holland's bucket brigade

method for assigning credit to chains of rules firing in a production system [33].

It differs significantly in the details, but shares the temporal-difference notion of

assigning credit along a sequence based on the local predicted improvement rather

than waiting for global reinforcement.

9.4 Other approaches

There have been a number of other approaches to learning from delayed reinforce-

ment. They can be divided into those that learn a world model (generally assuming,

unlike Rivest and Schapire [56], that there is no hidden state) and those that do

not.

Drescher [18] presents a theory and implementation of learning based on the

developmental psychology of Piaget. The agent learns precondition-action-result

schemata that allow it to achieve dynamically presented goals. Drescher's methods

have been demonstrated in a simple deterministic world with hidden state. There

have been a number of other efforts to learn world models. These include the work

9.4. OTHER APPROACHES 153

of Sutton and Pinette [73], Mason, Christiansen, and Mitchell [40], Mel [42], and

Shen [68].

There has been a series of attempts to solve the pole-balancing problem using

reinforcement. The problem is motivated by a physical system in which a pole

is flexibly mounted on a cart. The pole can rotate about its connection to the

cart in one dimension, and the cart can move along a one-dimensional track (in

the same dimension as the plane in which the pole moves). The goal is to control

the cart in such a way as to keep the pole from falling over and to keep the cart

from reaching either end of its track. The system is given an encoding of the

positions and velocities of the angle of the pole with respect to the cart and the

offset of the cart with respect to the midpoint of the track, and the system chooses

between applying a fixed-magnitude force on the cart in either a positive or negative

direction. Negative reinforcement is received whenever the pole falls over or the cart

reaches the end of its track. The system must learn a "bang-bang" control law that

maximizes reinforcement by keeping the pole up and the cart within limits for as

long as possible.

The first learning solution to this problem was the BOXES system of Michie and

Chambers [44]. It was so named because of the quantization of the four-dimensional

continuous-valued parameter space into a set of 255 regions or "boxes." Each box

was viewed as making a separate decision about whether to generate a "left" or

"right" action when the system was in that state, based on the expected run length

given each choice of action. Learning only took place after a failure, and each policy

was tested for an entire run. The details of the method are complex and somewhat

ad hoc, but it recognizes the interesting issues of the problem setting, including

temporal credit assignment and the tradeoff between acting to gain information

and acting to gain reinforcement.

Connell and Utgoff's CART system [17] takes advantage of the continuity of

the parameter space, using an algorithm that does not make an a priori division

of the space into discrete boxes. Points in the state space are determined from

experience to be either desirable or not desirable—interpolation is used to determine

the desirability of states that have not yet been visited. The system has considerably

154 CHAPTER 9. DELAYED REINFORCEMENT

better performance than either the BOXES system or the application of the AHC

algorithm to this problem by Selfridge and Sutton [67] or by Anderson [3,4]. The

difference in performance seems principally to depend on differences in the encodings

of the inputs, however.

9.5 Complexity Issues

Whether we are learning action values or an evaluation function, we are confronted

again with the problem of high computational complexity.

With the Q and IEQ algorithms, we are back again to the kinds of exponential

complexity in the size of the input and output that we have been trying to avoid.

Watkins addresses this issue for Q-learning by using Albus' CMAC method [2] for

associating Q values with input-action pairs for its "computational speed and sim-

plicity, rather than accuracy or storage economy." It is possible to use a CMAC that

is very space efficient, but at a potentially great cost in accuracy.

Another method of improving computational complexity at the expense of ac-

curacy is to use a linear associator to store the values being learned. The Q values

could be stored as a function of a bit vector constructed by concatenating the bit-

vector encodings of the input state and the action. Sutton uses this method in

his implementation of AHC, storing the evaluations of input states as functions of

bit-vector encodings of those states. It is difficult to quantify exactly how much

expressive power is lost by using such methods and how that loss in expressiveness

will impact the performance of the learning methods as a whole. A related method,

used by Anderson [3], is to store predictions in a multi-layer network trained us-

ing the error-backpropagation method (Section 3.4.3 describes this method in more

detail).

Algorithms, such as IEQ, that must associate a whole collection of data with an

input-action pair are harder to make more efficient in this way.

9.6. EMPIRICAL COMPARISON 155

0,1

Figure 65: Environment Dl: a very simple delayed-reinforcement environment.

Figure 66: Environment D2: a more difficult delayed-reinforcement environment.

9.6 Empirical Comparison

This section describes the results of three different methods of learning from delayed

reinforcement in three simple simulated environments.

9.6.1 Environments

The first two environments are taken from Sutton's thesis [70]. Figures 65 and 66

show their state-transition diagrams. The circled numbers are the reinforcement

values of the states; most of the states have reinforcement value 0 (which is omitted

from the figure). The first is a very easy deterministic environment. The second is a

considerably more difficult non-deterministic environment, with little differentiation

between "good" and "bad" actions. The third environment, from Watkins [78], is

shown in Figure 67. It was constructed to be misleading, because, although the

correct action in state 0 is 0, if the agent is executing a random policy, the action 1

will have a higher value. Before we apply the learning algorithms to these domains,

156 CHAPTER 9. DELAYED REINFORCEMENT

'^y

Figure 67: Environment D3: a highly misleading delayed-reinforcement environ-
ment.

it is interesting to consider the values of the states and the expected reinforcement

of acting optimally in each case.

The optimal strategy for environment Dl is, obviously, always to execute action

1. Because the world is deterministic, it will take five steps to get payoff 1, so the

average reinforcement of the optimal policy is 0.2. The values of the states can be

calculated by solving the following set of equations, which specify the value of each

state in terms of its global value and the discounted value of its successor under the

optimal policy:

The solution to the equations is

vo = 1 + ' yi>i

Vl = 7*>2

v2 = 7*>3

V3 = 7*>4

V4 = 7"o

V0 = 1/(1- 75)

Vl = 77(1 -75)

v2 = 73/(l -75)

9.6. EMPIRICAL COMPARISON 157

v3 = 72/(l-75)

v4 = 7/(l-7
5)

which, for 7 = .9, yields the following values: vo = 2.44, uj = 1.60, U2 = 1-78, U3 =

1.98, v4 = 2.20.

The second automaton, D2, is non-deterministic. In this case, the optimal strat-

egy is also always to execute action 1. The expected number of failures preceding

the first success in a sequence of Bernoulli trials with probability p is (1 — p)/p, so

we expect to remain in each of states 1 through 4 for an average of 1+0.4/0.6 = 1.67

steps when executing the optimal policy. Thus, the total expected round-trip time

is 4 x 1.67 + 1 = 7.67, making the expected reinforcement per tick approximately

equal to 0.13. The action values are the solution to the equations

VQ = 1 + fVi

v-i = 7(.4ü! + .6v2)

v2 = f(Av2 + .6u3)

v3 = 7(.4t>3 + .6u4)

v4 — 7(.4u4 + .6i>o)

which, for 7 = .9, is v0 = 1.84, ui = 0.93, v2 = 1.10, v3 = 1.31, v4 = 1.55.

Finally, for the complex automaton D3, the optimal strategy is to take action 0

in state 0 and action 1 in states 5, 6 and 7. This path through the transition graph

takes 5 steps to gain reinforcement value 2, yielding an average reinforcement per

tick of 0.4. The values of the states under the optimal strategy can be expressed as

vo = jvs

Vi = jv2

V2 = 7t>3

t>3 = 7^4

v4 = 1 + 7U0

«5 = 7^6

158 CHAPTER 9. DELAYED REINFORCEMENT

t>6 = 7^7

V7 = yvg

Solving these equations with 7 = .9 yields the state values v0 = 3.20, V\ = 2.83, v2 =

3.15, u3 = 3.50, vA = 3.88, v5 = 3.56, v6 = 3.96, v7 = 4.40, v8 = 4.88.

9.6.2 Algorithms

The following three algorithms for learning from delayed reinforcement were tested

on each of these problems:

• Q (described in Figure 62)

• IEQ (described in Figure 63)

• AHC (described in Figure 64) in combination with a version of the IE algorithm

(described in Figure 21) that uses normal statistics and is modified for use in

non-stationary environments.

It would have been appropriate to compare Anderson's combined back-propagation

and AHC method with these algorithms, but the parameter tuning problem for that

algorithm seems computationally impractical.

9.6.3 Parameter Tuning

Each of these algorithms has a number of parameters. Algorithm Q has parameters

a and 7; IEQ has parameters a^,1 7, and 6; AHC has parameters a, 7, and A; and

IE with normal nonstationary statistics has parameters a;e and 6. The parameter

7 is part of the specification of the correctness criterion, and it will be set to 0.9

for each algorithm and task. To illustrate the dependence of the Q algorithm on

its initial value, two versions of Q will be tested: one with initial values equal to 0
1 Because we are using statistics for the normal distribution, it is easier to express the size of the

confidence intervals in terms of a rather than zaii\ these are simply two ways of specifying the same
parameter.

9.6. EMPIRICAL COMPARISON 159

ALG-TASK Dl D2 D3
Q
a .95 .95 .95

IEQ

<*•> .01 .05 .001
6 .999 .9999 .99

AHC + IE

a .15 .1 .5
A .1 .2 1.0

<*,e .05 .05 .001
6 .9999 .99 .99

Table 9: Best parameter values for each algorithm in environments Dl, D2, and
D3.

(which is below the action values in all cases) and one with initial values equal to

20 (which is well above the action values in all cases). These two algorithms will be

referred to as Q0 and Q20.

For each algorithm and environment, a series of 100 trials of length 3000 were

run with different parameter values. Table 9 shows the best set of parameter values

found for each algorithm-environment pair. The parameter a for the Q algorithms

is largely irrelevant: if the initial value is too small, no value of a will result good

performance; if the initial value is large, a should be as large as possible.

9.6.4 Results

Using the best parameter values for each algorithm and environment, the perfor-

mance of the algorithms was compared on 100 runs of length 3000. The performance

metric was average reinforcement per tick, averaged over the entire run. The re-

sults are shown in Table 10, together with the expected reinforcement of executing

a completely random behavior (choosing actions 0 and 1 with equal probability)

and of executing the optimal behavior.

As in the previous sets of experiments, we must examine the relationships of

statistically significant dominance among the-algorithms for each task. Figure 68

shows, for each task, a pictorial representation of the results of a 1-sided t-test

160 CHAPTER 9. DELAYED REINFORCEMENT

ALG-TASK Dl D2 D3
QO .0000 .0910 .0000

Q20 .1907 .1222 .3780
IEQ .1959 .1222 .2315

AHC + IE .1988 .1153 .2923
random .1100 .1100 .1250
optimal .2000 .1300 .4000

Table 10: Average reinforcement for tasks Dl, D2, and D3 over 100 runs of length
3000.

TASK D1 TASK D2
AHCIE ft IEQ

I IEQ

Q20

Q0

TASK D3

Q20 • Q20

AHCIE AHCIE

IEQ

Q0

Figure 68: Significant dominance partial order among delayed-reinforcement algo-
rithms for each task.

applied to each pair of experimental results. The graphs encode a partial order of

significant dominance, with solid lines representing significance at the .95 level.

With the best parameter values for each algorithm, it is also instructive to

compare the rate at which performance improves as a function of the number of

training instances. Figures 69, 70, and 71 show superimposed plots of the learning

curves for each of the algorithms. Each point represents the average reinforcement

received over a sequence of 100 steps, averaged over 100 runs of length 3000.

9.6.5 Discussion

There are no clear winners among this set of algorithms. On the simple deterministic

task Dl, all of the algorithms approach the optimal performance level very closely.

9.6. EMPIRICAL COMPARISON 161

0.2

0.15'

er
0.1"

0.05-

77=
7 q20 z_

opt
:ahcie
ieq

random

5 10 15 20 25 30
bucket of 100 ticks

q0

Figure 69: Learning curves for Task Dl.

er

0.09"

bucket of 100 ticks

opt

random

qO

Figure 70: Learning curves for Task D2.

162 CHAPTER 9. DELAYED REINFORCEMENT

0.4

er

0.3

0.2

0.1

opt

ahcie «_

10 15 20 25
bucket of 100 ticks

random

30
q0

Figure 71: Learning curves for Task D3.

It takes the longest for Q20 to improve; if the initial values were smaller it would

converge faster. When the initial value is too small, as in QO, the algorithm performs

significantly worse than random.

The non-deterministic task D2 is very difficult because of the similarity in tran-

sition probabilities between the two actions in each state. On this task, algorithms

Q20 and IEQ perform essentially equivalently, approaching but not achieving optimal

performance. The AHC+IE algorithm performs very poorly at first, but suddenly

"realizes" the right course of action (perhaps when the AHC component has seen

the higher-numbered states enough to realize that they are significantly better and

the old statistics have decayed sufficiently in the IE component) and begins to per-

form as well as the other two algorithms. As usual, Q0 performs far worse than the

random strategy.

Performance on the difficult problem of task D3 hinges on persistently trying,

for a while, courses of action that appear bad. This persistence is necessary to

discover that the left loop of the graph is better if the proper action strategy is

known. The Q20 algorithm does a good job of this, and is the only one of the

algorithms to achieve optimal performance during the course of a 3000-tick run.

The other algorithms improve over time, but not nearly as fast. The fact that their

9.6. EMPIRICAL COMPARISON 163

performance rises above the .2 level (which is achieved by going around the right

loop of the graph) indicates that they are discovering the left loop of the graph. The

QO algorithm performs as badly as possible, probably by looping between states 0

and 5.

More extensive experiments will be required before it is possible to formulate

general rules of applicability of these algorithms to specific learning tasks.

Chapter 10

Experiments in Complex Domains

This chapter reports on three experiments comparing algorithms introduced in pre-

vious chapters on more complex domains. The first domain is a simulated one with

a large number of input and output bits, but with a fairly low-complexity function

defining the dependence of each output bit on the input bits. The second domain

is a mobile-robot domain in which the agent learns from local reinforcement. The

third domain is an extension of the mobile robot domain in which the agent learns

from delayed reinforcement. The settings of the experiments will emulate, as much

as possible, the deployment of these learning algorithms in realistic domains.

10.1 Simple, Large, Random Environment

This task, in its general form, has M input and M output bits. The optimal action

mapping is generated randomly as follows: each output bit is the conjunction or

disjunction of two input bits or their negations. If the agent chooses an action in

agreement with this mapping, it receives reinforcement value 1 with probability px

and 0 otherwise; if the agent's action disagrees with the optimal mapping, it receives

reinforcement value 1 with probability p2 and 0 otherwise.

165

166 CHAPTER 10. EXPERIMENTS IN COMPLEX DOMAINS

10.1.1 Algorithms

The following algorithms were tested in this domain:

• IE

• CASCADE + IE

• CASCADE + GTRL

The second and third algorithms consist of a set of Boolean-function learners

combined using the CASCADE method. It is expected that the cascade of GTRL

algorithms will be both more computationally efficient and learn more quickly than

the other three algorithms because the functions are not too complex and the op-

portunity for generalization is great.

10.1.2 Task

The algorithms were tested on an instance of the general family of large random

environments with M = 8, pi = .8, and & = .1. It would have been desirable to

use an even larger task, but the size of the data structures for M = 8 exhausted

the available computational power. Each run of each algorithm was on a newly

generated random task with the parameters described above.

10.1.3 Parameter Settings

When we wish to use a learning algorithm in a new setting, we will rarely have

the luxury of performing extensive parameter-tuning runs to be sure that we get

the best possible performance out of our algorithms. In this experiment, as well as

in the other two described in this chapter, parameters for the algorithms will be

chosen as well as possible to optimize performance within reasonable complexity

constraints based on intuitions gained from the results of previous experiments that

we have carried out. The parameter settings were:

10.2. MOBILE ROBOT DOMAIN 167

IE: ZQ/2 = 3.0

CASCADE + IE: za/2 = 3.0,6 = .9999

CASCADE + GTRL: za/2 = 3.0,8 = .9999, H = ZM, PA = 20, R = 100

All of the confidence-interval parameters are set to 3.0 and the decays are .9999. The

size of the hypothesis lists, H, in the GTRL algorithm varies linearly as a function

of the number of input bits. The number of input instances required for promotion

was 20 and new candidates were generated once every 100 ticks.

10.1.4 Results

Each of the algorithms was run for 10 trials of length 10,000 each. This is is a small

fraction of the number of trials that would be required for the agent to try all 512

possible actions in each of 512 possible input situations. The average reinforcement

for each algorithm on this task is

IE : .1019

CASCADE + IE : .1050

CASCADE + GTRL : .1634

The cascaded generate-and-test algorithm significantly outperforms either of the

other algorithms, due to its ability to generalize both over the input and output

sets. The learning curves for the algorithms are shown in Figure 72. As we can

see, the GTRL algorithm improves in performance significantly more quickly than

the others.

10.2 Mobile Robot Domain

This section describes the application of algorithms from this dissertation to a

mobile-robot learning scenario. There have been very few implementations of

reinforcement-learning algorithms on real robotic hardware. A notable example

168 CHAPTER 10. EXPERIMENTS IN COMPLEX DOMAINS

er

casc-gtrl

casc-ie

xe

bucket of 250 ticks

Figure 72: Learning curves for large, random environment.

is Maes and Brooks' [39] use of a simple algorithm to learn to coordinate predefined

behaviors on a walking robot. A number of researchers have applied reinforcement-

learning algorithms to simulated robotic domains, such as the cart-pole problem

described in Chapter 3. Franklin [24] used learning-automata techniques and the

ARP algorithm to learn to adjust the outputs of an existing controller to compensate

for externally applied torques on a simulated robot arm. In addition, there has been

work on learning world models, such as Clocksin and Moore's [16], Miller's [46], and

Mel's [42] work on learning a mapping from joint positions to visual coordinates in

the workspace of a robotic arm [42] and Mason, Christiansen, and Mitchell's [40]

work on learning the results of using a robotic arm to tip a tray of objects in various

ways.

The robot pictured in Figure 73 was used to validate a variety of reinforcement-

learning algorithms. It has two drive wheels, one on each side, which allow it to

move forward and backward along circular arcs. A set of five "feelers" allow it to

detect obstacles to its front and sides, the round bumper detects contact anywhere

on its perimeter, and four photosensors, facing forward, backward, left, and right,

measure the light levels in each direction.

10.2. MOBILE ROBOT DOMAIN 169

Figure 73: Spanky, a mobile robot.

170 CHAPTER 10. EXPERIMENTS IN COMPLEX DOMAINS

10.2.1 Algorithms

The same algorithms and parameter settings were used in this experiment as in the

previous one.

10.2.2 Task

In this task, the robot is given negative reinforcement, normally distributed with

mean -2 and standard deviation 0.5 whenever the round bumper makes contact with

any physical object. If the bumper is not engaged, the robot is given positive rein-

forcement, normally distributed with mean 1 and standard deviation 0.2, whenever

the light in its front sensor gets brighter. If the bumper has not engaged and the

brightness has not increased, it is given "zero" reinforcement, normally distributed

with mean 0 and standard deviation 0.2.

The robot interacts with the world by making fixed-length motions, either for-

ward or rotating in place to the left or right. The agent gets the following five bits

of input:

Bits 0 and 1: Which direction is currently the brightest? 0 = front, 1 = left, 2 =

right, 3 = back.

Bit 2: Is the rightmost feeler engaged?

Bit 3: Is the leftmost feeler engaged?

Bit 4: Is (at least) one of the middle three feelers engaged?

The agent must learn a mapping from this input space to its three actions that

maximizes its local reinforcement. It develops a behavior that avoids bumping into

obstacles and tends to move toward the light.

10.2.3 Results

All of the algorithms were run in the real robotic domain, with varying degrees of

success. Ideally, this section would describe a long series of trials of each algorithm

10.2. MOBILE ROBOT DOMAIN 171

ALG er
IE

CASCADE + IE
CASCADE + GTRL

.6439

.6203

.4930
random
optimal

.3074

.6695

Table 11: Average reinforcement for simulated mobile robot environment over 100
runs of length 2000.

on the real mobile robot. Unfortunately, it is difficult to conduct such trials fairly in

the physical system. The first problem is that a human must intervene whenever the

robot approaches the light source and move the robot to a new location. The second

problem is that it takes a long time to conduct the experiments. The time that it

takes the robot to move greatly dominates the computation time of the learning

algorithms. So, instead of trials on the real robot, we must substitute a simulation

of the robot and its domain described above. The simulation is not of high fidelity,

which causes this to be a substantially different problem than that of running on

the actual robot. Still, it serves as an interesting and slightly complex domain

for testing reinforcement-learning algorithms. Also, the results in the simulated

domain mirror informal impressions of the relative performance of the algorithms

on the actual robot.

In the robot simulation, noise is added to the action and perception of the robot.

Each action of the simulated robot is, with probability .1, changed to a randomly

chosen action; each perception of the state of the world is, with probability .1,

changed to a randomly chosen world state. Whenever the robot reaches the light

source in the simulated world, the light is "teleported" to a new randomly-chosen

location.

The results of running each algorithm for 100 runs of length 2000 are shown in

Table 11. The optimal expected reinforcement value was estimated by running a

hand-crafted non-learning behavior in the environment under the same conditions

as the experimental algorithms. Similarly, the expected reinforcement of a random

strategy was estimated by running a random strategy in the world. All of the

172 CHAPTER 10. EXPERIMENTS IN COMPLEX DOMAINS

er

5 10 15
bucket of 100 ticks

20

Figure 74: Learning curves for the simulated mobile robot task.

differences in expected reinforcement are significant. There is only a small difference

in performance between the pure IE algorithm and the cascaded version, but the

GTRL algorithm performs markedly worse than either of them. As we can see in the

learning curves, shown in Figure 74, the GTRL algorithm takes longer to converge

to its maximum performance, which is lower than optimal because it is continually

trying new hypotheses.

10.3 Robot Domain with Delayed Reinforcement

The previous mobile robot domain can be complicated by giving the robot a large

reinforcement only when it reaches the light source. This problem is considerably

more difficult than other domains used for delayed reinforcement, such as the cart-

pole domain. In the cart-pole domain, the robot receives a large negative reinforce-

ment value whenever the pole falls over. In the absence, of a good control strategy,

the pole will fall over quite readily, giving the learner a lot of good data early on. In

this robot domain, the robot may execute its initial random strategy for a very long

time before it accidentally encounters the light source. Informal experiments with

the real mobile robot were only successful if a human took an active role near the

10.3. ROBOT DOMAIN WITH DELAYED REINFORCEMENT 173

beginning of the run, putting the robot in situations from which it was relatively

easy to reach the light and, therefore, get useful reinforcement data.1

This section will report formal experiments carried out in a simulated version

of the robotic domain with delayed reinforcement.

10.3.1 Algorithms

This experiment compares the same algorithms as were compared in the experiment

described in Section 9.6: Q, IEQ, and AHC + IE. The parameter settings were

Q: a = .95, init= 20

IEQ: aie = .01, 6 = .9999

AHC + IE: a = .1, A = .2, 6 = .9999, aie = .05

10.3.2 Task

The inputs and outputs available to the agent remain the same as in the local

reinforcement task. The reinforcement generated by the world is, in this domain,

global rather than local. When the agent comes very close to the light source,

it is given reinforcement that is normally distributed with mean 10 and standard

deviation 2.0; when it bumps into an obstacle, it is given reinforcement normally

distributed with mean -2 and standard deviation 0.25; finally, if it neither bumps

into the wall or comes near the light, it is given reinforcement normally distributed

with mean 0 and standard deviation 0.25. When the light is reached by the robot,

it is randomly moved to a new location.

10.3.3 Results

The results of running each algorithm for 10 runs of length 10,000 are shown in

Table 12. As before, the optimal expected reinforcement value was estimated by
1This process is an instance of a class of methods for expediting learning that are referred to by

psychologists [32] as "shaping." Its use in the robot domain described here was suggested by R.
Sutton.

174 CHAPTER 10. EXPERIMENTS IN COMPLEX DOMAINS

ALG er
Q

IEQ
AHC + IE

.1634

.1828

.3651
random
optimal

.0000

.8269

Table 12: Average reinforcement for simulated robot domain with delayed reinforce-
ment over 10 runs of length 10,000.

running a hand-crafted non-learning behavior in the environment under the same

conditions as the experimental algorithms. Similarly, the expected reinforcement of

a random strategy was estimated by running a random strategy in the world. The

performance of AHC + IE was significantly better than that of Q or IEQ, which were

not significantly different from one another. The learning curves for this domain

are shown in Figure 75. The poor performance of the algorithms in this domain

may be somewhat deceiving. In many cases, the learning strategies learned quickly

to perform at near-optimal levels. However, in many other cases, the robot never,

or only late in the run, acquired enough experience with the light source to learn an

appropriate strategy. It is likely that if the runs were another order of magnitude

longer than those reported here, the asymptotic performance of each of the algo-

rithms would be very high. For this reason, a "shaping" process used early in the

runs would allow the agent to get more useful information and hence improve its

performance. An interesting area for future research would be to formally specify

such shaping processes and characterize their role in expediting learning.

10.3. ROBOT DOMAIN WITH DELAYED REINFORCEMENT 175

er

10 20 30

bucket of 250 ticks

«_ random
40

Figure 75: Learning curves for the simulated delayed-reinfbrcement mobile robot
task.

Chapter 11

Conclusion

Simple reinforcement-learning problems can be effectively solved using the interval-

estimation algorithm. It has two serious limitations, however. First, its computa-

tional complexity increases exponentially in the size of the input and output spaces.

Second, it exhibits no generalization across input and output instances.

These problems have been addressed by the use of linear-association and error

back-propagation methods for associative reinforcement-learning. Each of these

methods has its own problems. The linear-association method can only learn action

maps that are in the class of linearly-separable functions. Error backpropagation

methods can, theoretically, learn functions of arbitrarily complexity, but it generally

requires a large number of presentations of the learning data and is very sensitive

to internal parameter values.

This dissertation has addressed the problem of finding new algorithms for effi-

ciently learning limited classes of action maps from reinforcement.

The first step was to simplify the job of the algorithm designer by reducing

the problem of learning action maps with many output bits to the problem of

learning action maps with single output bits. The CASCADE method implements

this problem reduction, providing decreased time complexity and improved learning

rates, as well.

Valiant's algorithm for learning Boolean functions in fc-DNF provided a useful

foundation for creating new reinforcement-learning algorithms. The LARCKDNF and

177

178 CHAPTER 11. CONCLUSION

IEKDNF algorithms integrate the ideas of linear-associative reinforcement-comparison

and of interval-estimation with Valiant's methods. These new algorithms efficiently

learn action maps in fc-DNF: they are both more time-efficient than the raw IE al-

gorithm, require fewer presentations of data than the BP algorithm, and can learn

a large class of functions than linear-associative approaches.

The GTRL algorithm is also an algorithm for learning Boolean functions from

reinforcement. Its main advantage is that it can learn low-complexity functions

very efficiently; however, by changing internal parameter values, it can be config-

ured to learn a variety of different classes of functions with different computational

complexities. In addition, its use of internal symbolic representations allows it to

be extended to learn simple sequential networks.

All of this work has only addressed the problem of local learning from immedi-

ate reinforcement. Existing work on temporal difference methods can also be seen

as a problem reduction. It reduces the problem of global learning from delayed

reinforcement to the problem of local learning from non-stationary immediate rein-

forcement. This perspective allows TD methods to be integrated with any available

local learning method.

All of these methods can be integrated in various ways, such as using the CAS-

CADE and TD problem reductions together with the GTRL, LARCKDNF, or IEKDNF

algorithms to construct an algorithm that learns an action mapping with many

output bits from delayed reinforcement. These combined methods have been tested

and shown to work robustly on a physical mobile robot, demonstrating their appli-

cability to embedded systems in the real world.

The rest of this chapter consists of two sections. The first briefly lists the

novel contributions of the work described in this dissertation. The second discusses

directions for extending this research.

11.1 Contributions

The work described in this dissertation has made a number of contributions to

solving the problem of learning in embedded systems. They are summarized below,

/*•/

II.J. CONTRIBUTIONS 179

organized in the order in which they were presented.

Foundations: The description of the foundations of reinforcement learning in-

tegrates existing work in dynamic programming, learning-automata theory,

statistics, and previous work on the foundations of reinforcement learning

into a general framework for describing learning behaviors and measuring

their success. In addition to making the existing work more accessible to AI

researchers, this formulation makes it easier for researchers to compare their

results directly and to share implementations of learning behaviors and of

simulated environments.

Interval Estimation Algorithm: The interval estimation algorithm is a novel

extension of existing methods for reinforcement learning that is grounded

directly in statistical theory. In empirical tests, it learns more effectively than

other algorithms of its kind. However, its computational complexity makes it

impractical for use on large problems.

Cascade Method: The cascade method of building a reinforcement learner with

many output bits from a collection of reinforcement learners with one output

bit is new. It has been shown that if each of the individual components has

learned to perform the behavior that is correct for it, the entire system will

perform the behavior that is correct overall. The cascade method works well

in empirical tests, often resulting in improved convergence rates as well as

lower time complexity.

Reinforcement Learning of fc-DNF: Two algorithms are presented that learn

Boolean functions from reinforcement, based on Valiant's concept learning

algorithm for concepts expressible in fc-DNF. One uses the techniques of the

interval estimation algorithm, while the other is derived from Sutton's linear-

association reinforcement-comparison algorithm. They are both computation-

ally much more efficient than standard methods and perform nearly as well

as standard methods on a variety of tasks.

180 CHAPTER 11. CONCLUSION

Generate-and-Test Reinforcement Learner: The GTRL algorithm is a novel

reinforcement-learning method that uses syntactic search through the space

of Boolean function descriptions to learn single-bit output functions from re-

inforcement. It is based on, but has diverged significantly from, Schlimmer's

STAGGER system, using statistical measures of necessity and sufficiency to

guide its search. It is highly configurable and can learn low-complexity func-

tions very efficiently, even in the presence of a large number of irrelevant

attributes.

Action Maps with State: The generate-and-test reinforcement learner was ex-

tended by adding set-reset as an additional binary operator. This extension

allows simple action maps whose output depends on input values from arbi-

trarily far back in history to be constructed. Although the method cannot

generate all possible sequential networks, it does represent a first effort at

learning action maps with state directly from reinforcement.

Delayed Reinforcement: Two existing approaches to learning from delayed rein-

forcement were combined with the interval-estimation method to yield robust

algorithms. Watkins' Q-learning method was extended to use the techniques

of the interval-estimation method to keep the algorithm from converging pre-

maturely to suboptimal solutions. In addition, Sutton's AHC method of learn-

ing to generate a local reinforcement signal was tested with the IE algorithm

as the local learning component.

Mobile Robot Experiments: Many of the algorithms described here were tested

on a mobile robot in a moderately complex and noisy physical environment.

In these experiments, the algorithms were successfully used to learn control

strategies and exhibited considerable robustness.

11.2 Future Work

There is a long list of interesting variations and extensions that could be made to

the work described in this dissertation. Many of them are suggested at the ends of

11.2. FUTURE WORK 181

the relevant chapters. As well as considering local improvements, it is important to

understand the global setting of this work.

Tabula rasa learning, as described in this dissertation, may not be a sufficient

method for creating intelligent embedded agents. However, the methods of rein-

forcement learning may be used in concert with other knowledge provided in differ-

ent forms by a human programmer, in order to construct agents that start with a

useful base of knowledge and can improve upon it. Knowledge might be provided

by programmers in a number of different forms.

One of the simplest kinds of information that would improve the performance

of reinforcement-learning algorithms is the expected reinforcement of the optimal

policy. An agent that has this information can use it to make more informed trade-

offs between acting to gain information and acting to gain reinforcement. The

agent will be able to tell when it has found the best policy and need not experiment

further.

Russell [59] has introduced the idea of using determinations to bias learning.

Determinations are, essentially, descriptions of which input values the outputs de-

pend on. Such information would be of great help in constraining the search done

by the GTRL algorithm or in limiting the size of the set of conjunctive terms in the

fc-DNF algorithms.

Finally, we might start from a complete or partial program specified in terms

of condition-action rules. An interesting research direction would be to develop

representations of programs that are amenable to adjustment using reinforcement-

learning methods.

/%

Appendix A

Statistics in GTRL

This appendix describes three statistical modules that can be used with the GTRL

algorithm. They can be applied when reinforcement is binomially or normally

distributed, as well as in cases for which there is no model. Each module implements

the statistical functions described in Section 7.3.

A.l Binomial Statistics

Each hypothesis has the following set of statistics associated with it:

bo The number of times this hypothesis has agreed with the action 0 (not necessarily

chosen by it) and received reinforcement value 0 (mnemonically "bad 0").

6i The number of times this hypothesis has agreed with the action 1 and received

reinforcement value 0.

go The number of times this hypothesis has agreed with the action 0 and received

reinforcement value 1 (mnemonically, "good 0").

0i The number of times this hypothesis has agreed with the action 1 and received

reinforcement value 1.

pb0 The number of times this hypothesis has chosen the action 0 and received

reinforcement value 0 (mnemonically, "predicted bad 0").

183

184 APPENDIX A. STATISTICS IN GTRL

pbi The number of times this hypothesis has chosen the action 1 and received

reinforcement value 0.

pgo The number of times this hypothesis has chosen the action 0 and received

reinforcement value 1 (mnemonically, predicted good 0).

pgi The number of times this hypothesis has chosen the action 1 and received

reinforcement value 1.

The procedure for updating these statistics should be apparent from the descriptions

given above.

Given this data structure, we can define the statistical functions as follows:

age(h) = b0 + b1+g0 + g1

erth) = -
&0 + &1 +9o + gi

er-ub(h) = ub(g0 +g1,b0 + b1 +g0 +gx)

erpln) = — ;
pöo + pbi + pgo + P9i

erp-ub(h) = ub(pg0 + pgi, pb0 + pbi +pg0 + pgi)

N(h) = 9o

S(h) =

9o + bo
9i

9i + bi

where the upper-bound function, ub, is defined [36] as

i+#+^#)(i-?)+%
ub(x,n) = -g-

The parameter za/2 is used to determine the size of the confidence interval for

computing ub.

A.2. NORMAL STATISTICS 185

A.2 Normal Statistics

Each hypothesis has the following set of statistics associated with it:

n0 The number of times this hypothesis has agreed with the action 0 (not necessarily

chosen by it).

ni The number of times this hypothesis has agreed with the action 1.

so The sum of the reinforcement values received when the hypothesis has agreed

with the action 0.

si The sum of the reinforcement values received when the hypothesis has agreed

with action 1.

ss The sum of the squares of the reinforcement values received when the hypothesis

has agreed with the action taken.

rip The number of times this hypothesis has chosen an action.

sp The sum of reinforcement values received when the hypothesis has chosen an

action.

ssp The sum of the squares of the reinforcement values received when the hypothesis

has chosen an action.

The procedure for updating these statistics should be apparent from the descriptions

given above.

Given this data structure, we can define the statistical functions as follows:

age(h) = n0 + ni

er(h) =
Tlo + Tli

er-ub(h) = nub(n0 + ni,s0 + si,ss)

erp(h) = i£.
np

er-ub(h) = nub(np,spissp)

186 APPENDIX A. STATISTICS IN GTRL

N(h)

S(h)
n0

where the normal upper-bound function, nub, is defined as

nu6(n,E^,E^) = y + C/21)^

where y = x/n is the sample mean,

5 =
nEi2-(Ei)2

^| n(n - 1)

is the sample standard deviation, and v£j2 is Student's t function with n — 1 degrees

of freedom [69]. The parameter zQ/2 is used to determine the size of the confidence

interval for computing nub.

A.3. NON-PARAMETRIC STATISTICS 187

A.3 Non-parametric Statistics

This statistical module is parametrized by w, the window size, as well as by the

confidence-interval parameter z0/2. The parameter tu controls the size of the data

buffers kept by the module. Because this method employs no summary statistics,

all of the data for the last w ticks are stored in this module. Each hypothesis has

the following set of statistics associated with it:

n The number of times this hypothesis has agreed with the action taken.

rt A list of the reinforcement values of the last w ticks on which this hypothesis

agreed with the action taken, sorted increasing by time received.

rv A list of the reinforcement values of the last w ticks on which this hypothesis

agreed with the action taken, sorted increasing by value.

n0 The number of times this hypothesis has agreed with the action 0.

rto A list of the reinforcement values of the last w ticks on which this hypothesis

agreed with the action 0, sorted increasing by time received.

rv0 A list of the reinforcement values of the last w ticks on which this hypothesis

agreed with the action 0, sorted increasing by value.

n\ The number of times this hypothesis has agreed with the action 1.

rn A list of the reinforcement values of the last tu ticks on which this hypothesis

agreed with the action 1, sorted increasing by time received.

r„! A list of the reinforcement values of the last tu ticks on which this hypothesis

agreed with the action 1, sorted increasing by value.

np The number of times this hypothesis has chosen the action.

rtp A list of the reinforcement values of the last w ticks on which this hypothesis

chose the action, sorted increasing by time received.

188 APPENDIX A. STATISTICS IN GTRL

rvp A list of the reinforcement values of the last w ticks on which this hypothesis

chose the action, sorted increasing by value.

Updating these statistics is slightly more complex that in the previous cases. The

n's are simply incremented appropriately. As long as the n value is less than or

equal to w, new data are simply inserted into the appropriate places in the lists.

Once n is greater than w, on each tick, the first element of rt is removed from both

rt and r„, and the new reinforcement value is inserted into the resulting rv and put

on the end of the resulting rt. This keeps the window of data sliding along. We

need rt in order to know which element to remove from rv before we can add a new

element.

Given this data structure, we can define the statistical functions, using the

ordinary sign test [26], as follows:

age(h) = n

er(h) = rv[[imn(w,n)/2\]

er-ub(h) = rv[min(u>,n) — u]

erp(h) = rwp[[min(u>,n,,)/2J]

er-ub(k) = rvp[imn(w, np) — u]

N(h) = rv0[Lmin(w,n0)/2j]

S(h) = rvl[[mm(w,ni)/2j]

where value u is chosen to be the largest value such that

(U=o)
\nk.5n < a/2 .)

For large values of n, u can be approximated using the normal distribution.

Appendix B

Simplifying Boolean Expressions

in GTRL

This appendix describes the Boolean canonicalization and simplification rules that

are used in the GTRL algorithm. It is assumed that simplification happens when

a conjunction, disjunction, or set-reset expression is being constructed and that

the arguments have already been simplified and canonicalized. The algorithm is

described as first constructing the combined hypothesis, then testing to see if has

depth appropriate to the level of the algorithm for which it was constructed. In

fact, the procedures for constructing composite hypotheses simply return nil if any

applicable simplification rules can be found.

The disjunctive hypothesis e\ V e2 can be simplified to a lower level of complexity

if any of the following statements is true (e stands for any expression):

ei = c2

ex = false

t\ = true

e2 = false

e2 = true

ea = -ie2

e2 = ->ei

189

190 APPENDIX B. SIMPLIFYING BOOLEAN EXPRESSIONS IN GTRL

ei = e2 Ve

ei = eVc2

C2 = ex Ve

e2 = eVcj

ei = e2 A e

Cl = e Ae2

e2
= ei Ae

e2
= e A ei

The conjunctive hypothesis ej A e2 can also be simplified in any of the situations

described above. The set-reset hypothesis SR(ei,e2) can be simplified in all of the

situations described above, except the ones in which t\ = e2 A e or e\ = e A e2.

To see this, note that SR(a, a A b) = SR(a, b) because setting takes priority, but

SR(a A b, a) cannot be reduced.

Canonicalization consists of ordering the two top-level subexpressions, because

they are assumed to have already been canonicalized. An arbitrary ordering is de-

fined on operators; atomic expressions referring to input bits are ordered according

to their index into the input vector. The expression ej is less than expression e2 if

and only if

• t\ and e2 are both atoms and t\ < e2;

• ei is an atom and e2 is not;

• neither ea nor e2 is an atom and the top level operator of ei is less than the

top level operator of e2;

• neither e\ nor c2 is an atom, they both have the same top-level operator,

and the first subexpression of t\ is less than (under this definition) the first

subexpression of e2; or

• neither ex nor e2 is an atom, they both have the same top-level operator, they

both have the same first subexpression, and the second subexpression of ej is

less than (under this definition) the second subexpression of e2.

-"N

Bibliography
r

[1] David W. Aha and Dennis Kibler. Noise tolerant instance-based learning al-

gorithms. In Proceedings of the Eleventh International Joint Conference on

Artificial Intelligence, volume 1, pages 794-799, Detroit, Michigan, 1989. Mor-

gan Kaufmann.

[2] James S. Albus. Brains, Behavior, and Robotics. BYTE Books, Subsidiary of

McGraw-Hill, Peterborough, New Hampshire, 1981.

[3] Charles W. Anderson. Learning and Problem Solving with Multilayer Con-

nectionist Systems. PhD thesis, University of Massachusetts, Amherst, Mas-

sachusetts, 1986.

[4] Charles W. Anderson. Strategy learning with multilayer connectionist repre-

sentations. In Proceedings of the Fourth International Workshop on Machine

Learning, pages 103-114, Ann Arbor, Michigan, 1987.

[5] Dana Angluin and Philip Laird. Learning from noisy examples. Machine

Learning, 2(4):343-370, 1988.

[6] W. Ross Ashby. Design For a Brain: The Origin of Adaptive Behaviour. John

Wiley and Sons, New York, New York, second edition, 1960.

[7] A. G. Barto and P. Anandan. Pattern recognizing stochastic learning automata.

IEEE Transactions on Systems, Man, and Cybernetics, 15:360-374, 1985.

191

192 BIBLIOGRAPHY

[8] A. G. Barto, R. S. Sutton, and C. J. C. H. Watkins. Learning and sequential

decision making. Technical Report 89-95, Department of Computer and Infor-

mation Science, University of Massachusetts, Amherst, Massachusetts, 1989.

[9] Andrew G. Barto. Connectionist learning for control. Technical Report 89-

89, Department of Computer and Information Science, University of Mas-

sachusetts, Amherst, Massachusetts, 1989.

[10] Andrew G. Barto and Michael I. Jordan. Gradient following without back-

propagation in layered networks. In Proceedings of the IEEE First Interna-

tional Conference on Neural Networks, volume 2, pages 629-636, San Diego,

California, 1987.

[11] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike

adaptive elements that can solve difficult learning control problems. IEEE

Transactions on Systems, Man, and Cybernetics, SMC-13(5):834-846, 1983.

[12] Donald A. Berry and Bert Fristedt. Bandit Problems: Sequential Allocation of

Experiments. Chapman and Hall, London, 1985.

[13] L. Blum and N. Blum. Towards a mathematical theory of inductive inference.

Information and Control, 28:125-155, 1975.

[14] Wray Buntine. A critique of the Valiant model. In Proceedings of the Eleventh

International Joint Conference on Artificial Intelligence, volume 1, pages 837-

842, Detroit, Michigan, 1989. Morgan Kaufmann.

[15] Robert R. Bush and William K. Estes, editors. Studies in Mathematical Learn-

ing Theory. Stanford University Press, Stanford, California, 1959.

[16] W. F. Clocksin and A. W. Moore. Some experiments in adaptive state-space

robotics. Unpublished Manuscript, 1988.

[17] Margaret E. Connell and Paul E. Utgoff. Learning to control a dynamic physical

system. In Proceedings of the Sixth National Conference on Artificial Intelli-

gence, volume 2, pages 456-460, Seattle, Washington, 1987. Morgan Kaufmann.

A

BIBLIOGRAPHY 193

[18] Gary L. Drescher. Made-up Minds: A Constructivisi Approach to Artificial

Intelligence. PhD thesis, Massachusetts Institute of Technology, Cambridge,

Massachusetts, 1989.

[19] Richard 0. Duda, John Gaschnig, and Peter E. Hart. Model design in the

Prospector consultant system for mineral exploration. In Donald Michie, edi-

tor, Expert Systems in the Micro Electronic Age. Edinburgh University Press,

Edinburgh, U.K., 1979.

[20] Richard 0. Duda, Peter E. Hart, and Nils J. Nilsson. Subjective Bayesian

methods for rule-based inference systems. Technical Report 124, Artificial

Intelligence Center, SRI International, Menlo Park, California, 1976.

[21] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press,

New York, New York, 1972.

[22] William K. Estes. Toward a statistical theory of learning. Psychological Review,

57:94-107, 1950.

[23] Douglas H. Fisher. Conceptual clustering, learning from examples, and infer-

ence. In Proceedings of the Fourth International Workshop on Machine Learn-

ing, pages 38-49, Irvine, California, 1987. Morgan Kaufmann.

[24] Judy A. Franklin. Learning control in a robotic system. In Proceedings of the

IEEE International Conference on Systems, Man, and Cybernetics, 1987.

[25] King-Sun Fu. Learning control systems—review and outlook. IEEE Transac-

tions on Automatic Control, 15(2):210-221, April 1970.

[26] Jean Dickinson Gibbons. Nonparametric Statistical Inference. Marcel Dekker,

Inc., New York and Basel, second edition, 1985.

[27] E. Mark Gold. Language identification in the limit. Information and Control,

10:447-474, 1967.

194 BIBLIOGRAPHY

[28] E. Mark Gold. Complexity of automaton identification from given data. In-

formation and Control, 37:302-320, 1978.

[29] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley, Reading, Massachusetts, 1989.

[30] John J. Grefenstette. Incremental learning of control strategies with genetic

algorithms. In Proceedings of the Sixth International Workshop on Machine

Learning, pages 340-344, Ithaca, New York, 1989. Morgan Kaufmann.

[31] David Haussler. Quantifying inductive bias: AI learning algorithms and

Valiant's learning framework. Artificial Intelligence, 36(2): 177-222, 1988.

[32] Ernest R. Hilgard and Gordon H. Bower. Theories of Learning. Prentice Hall,

Englewood Cliffs, New Jersey, fourth edition, 1975.

[33] John H. Holland. Escaping brittleness: The possibilities of general-purpose

learning algorithms applied to parallel rule-based systems. In Ryszard S.

Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors, Machine Learn-

ing: An Artificial Intelligence Approach, volume 2, chapter 20. Morgan Kauf-

mann, 1986.

[34] Leslie Pack Kaelbling. Learning as an increase in knowledge. Technical report,

Center for the Study of Language and Information, Stanford, California, 1987.

[35] John G. Kemeny and J. Laurie Snell. Finite Markov Chains. Springer-Verlag,

New York, 1976.

[36] Richard J. Larsen and Morris L. Marx. An Introduction to Mathematical Statis-

tics and its Applications. Prentice-Hall, Englewood Cuffs, New Jersey, 1986.

[37] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new

linear threshold algorithm. Machine Learning, 2(4):245-318, 1988.

[38] Clive Loader. Personal communication, following Pyke, Annals of Mathemat-

ical Statistics, page 568, 1959. Statistical consultant service, Stanford Univer-

sity, Stanford, California, 1990.

BIBLIOGRAPHY 195

[39] P. Maes and Rodney A. Brooks. Learning to coordinate behaviors. In Pro-

ceedings of the Eighth National Conference on Artificial Intelligence, Boston,

Massachusetts, 1990. Morgan Kaufmann,
i

[40] Matthew T. Mason, Alan D. Christiansen, and Tom M. Mitchell. Experiments

in robot learning. In Proceedings of the Sixth International Workshop on Ma-

r chine Learning, pages 141-145, Ithaca, New York, 1989. Morgan Kaufmann.

[41] John McCarthy and Patrick J. Hayes. Some philosophical problems from the

standpoint of artificial intelligence. In B. Meltzer and D. Michie, editors, Ma-

chine Intelligence 4- Edinburgh University Press, Edinburgh, 1969.

[42] Bartlett W. Mel. Building and using mental models in a sensory-motor domain:

A connectionist approach. In Proceedings of the Fifth International Conference

on Machine Learning, pages 207-213, Ann Arbor, Michigan, 1988.

[43] Ryszard S. Michalski. A theory and methodology of inductive learning. In

Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors, Ma-

chine Learning: An Artificial Intelligence Approach, chapter 4. Tioga, 1983.

[44] D. Michie and R. A. Chambers. BOXES: An experiment in adaptive control.

In E. Dale and D. Michie, editors, Machine Intelligence 2. Oliver and Boyd,

Edinburgh, 1968.

[45] Donald Michie. Machine learning in the next five years. In Proceedings of the

Third European Working Session on Learning, pages 107-122, Glasgow, 1988.

[46] W. Thomas Miller, III. Sensor-based control of robotic manipulators using a

f general learning algorithm. IEEE Journal of Robotics and Automation, RA-

3(2):157-165, 1987.

[47] Marvin L. Minsky and Seymour Papert. Perceptrons: An Introduction to Com-

putational Geometry. MIT Press, Cambridge, Massachusetts, 1969.

196 BIBLIOGRAPHY

[48] Marvin Lee Minsky. Theory of Neural-Analog Reinforcement Systems and Its

Application to the Brain-Model Problem. PhD thesis, Princeton University,

Princeton, New Jersey, 1954.
i

[49] Tom M. Mitchell. Version spaces: A candidate elimination approach to rule

learning. In Proceedings of the International Joint Conference on Artificial

Intelligence, pages 305-310, Cambridge, Massachusetts, 1977. *\

[50] Tom M. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203-

226, 1982.

[51] Edward F. Moore. Gedanken experiments on sequential machines. In Automata

Studies, pages 129-153. Princeton University Press, Princeton, New Jersey,

1956.

[52] Paul Munro. A dual back-propagation scheme for scalar reward learning. In

Proceedings of the Ninth Conference of the Cognitive Science Society, pages

165-176, Seattle, Washington, 1987.

[53] Kumpati Narendra and M. A. L. Thathachar. Learning Automata: An Intro-

duction. Prentice-Hall, Englewood, New Jersey, 1989.

[54] Nils J. Nilsson. Learning Machines. McGraw-Hill, New York, 1965. Second

edition, Morgan Kaufmann, 1990.

[55] J. Ross Quinlan. Learning efficient classification procedures and their appli-

cation to chess end games. In Ryszard S. Michalski, Jaime G. Carbonell, and

Tom M. Mitchell, editors, Machine Learning: An Artificial Intelligence Ap-

proach, chapter 15. Tioga, 1983.

-\
[56] Ronald L. Rivest and Robert E. Schapire. A new approach to unsupervised

learning in deterministic environments. In Proceedings of the Fourth Interna-

tional Workshop on Machine Learning, pages 364-375, Irvine, California, 1987.

Morgan Kaufmann.

BIBLIOGRAPHY 197

[57] Sheldon M. Ross. Introduction to Stochastic Dynamic Programming. Academic

Press, New York, 1983.

[58] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-

tations by error propagation. In David E. Rumelhart and James L. McClelland,

editors, Parallel Distributed Processing, volume 1, chapter 8. MIT Press, 1986.

[59] Stuart J. Russell. The Use of Knowledge in Analogy and Induction. Pitman

Publishing, London, 1989.

[60] A. L. Samuel. Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 3:211-229, 1959. Reprinted in E.

A. Feigenbaum and J. Feldman, editors, Computers and Thought, McGraw-

Hill, New York 1963.

[61] A. L. Samuel. Some studies in machine learning using the game of checkers.

II—Recent progress. IBM Journal of Research and Development, pages 601-

617, 1967.

[62] Jeffrey C. Schlimmer. Concept Acquisition Through Representational Adjust-

ment. PhD thesis, University of California, Irvine, Irvine, California, 1987.

[63] Jeffrey C. Schlimmer. Incremental adjustment of representations for learning.

In Proceedings of the Fourth International Workshop on Machine Learning,

pages 79-90, Ann Arbor, Michigan, 1987.

[64] Jeffrey C. Schlimmer. Learning and representation change. In Proceedings

of the Sixth National Conference on Artificial Intelligence, volume 2, pages

511-515, Seattle, Washington, 1987. Morgan Kaufmann.

[65] Jeffrey C. Schlimmer and Richard H. Granger, Jr. Beyond incremental process-

ing: Tracking concept drift. In Proceedings of the Fifth National Conference

on Artificial Intelligence, volume 1, pages 502-507, Philadelphia, Pennsylvania,

1986. Morgan Kaufmann.

198 BIBLIOGRAPHY

[66] Jeffrey C. Schlimmer and Richard H. Granger, Jr. Incremental learning from

noisy data. Machine Learning, l(3):317-354, 1986.

[67] Oliver G. Selfridge and Richard S. Sutton. Training and tracking in robotics.

In Proceedings of the Ninth, International Joint Conference on Artificial Intel-

ligence, pages 670-672, Los Angeles, California, 1985. Morgan Kaufmann.

[68] Wei-Min Shen. Learning from the Environment Based on Percepts and Actions.

PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1989.

[69] George W. Snedecor and William G. Cochran. Statistical Methods. Iowa State

University Press, Ames, Iowa, eighth edition, 1989.

[70] Richard S. Sutton. Temporal Credit Assignment in Reinforcement Learning.

PhD thesis, University of Massachusetts, Amherst, Massachusetts, 1984.

[71] Richard S. Sutton. Learning to predict by the method of temporal differences.

Machine Learning, 3(l):9-44, 1988.

[72] Richard S. Sutton. Integrated architectures for learning, planning, and reacting

based on approximating dynamic programming. In Proceedings of the Seventh

International Conference on Machine Learning, Austin, Texas, 1990. Morgan

Kaufmann.

[73] Richard S. Sutton and Brian Pinette. The learning of world models by con-

nectionist networks. In Proceedings of the Seventh Annual Conference of the

Cognitive Science Society, pages 54-64, 1985.

[74] M. A. L. Thathachar and P. S. Sastry. A new approach to the design of

reinforcement schemes for learning automata. IEEE Transactions on Systems,

Man, and Cybernetics, SMC-15(1):168-175, 1985.

[75] M. L. Tsetlin. Automaton Theory and Modeling of Biological Systems. Aca-

demic Press, New York, New York, 1973.

r

BIBLIOGRAPHY 199

[76] L. G. Valiant. A theory of the learnable. Communications of the ACM,

27(11):1134-1142, 1984.

[77] L. G. Valiant. Learning disjunctions of conjunctions. In Proceedings of the

International Joint Conference on Artificial Intelligence, volume 1, pages 560-

566, Los Angeles, California, 1985. Morgan Kaufmann.

[78] Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards.

PhD thesis, King's College, Cambridge, 1989.

[79] Paul J. Werbos. Generalization of backpropagation with application to a re-

current gas market model. Neural Networks, 1:339-356, 1988.

[80] Steven D. Whitehead and Dana H. Ballard. A role for anticipation in reactive

systems that learn. In Proceedings of the Sixth International Workshop on

Machine Learning, pages 354-357, Ithaca, New York, 1989. Morgan Kaufmann.

[81] Bernard Widrow, Narendra K. Gupta, and Sidhartha Maitra. Punish/reward:

Learning with a critic in adaptive threshold systems. IEEE Transactions on

Systems, Man, and Cybernetics, SMC-3(5):455-465, 1973.

[82] Bernard Widrow and Marcian E. HofF. Adaptive switching circuits. In IRE

WESCON Convention Record, New York, New York, 1960. Reprinted in Neu-

rocomputing: Foundations of Research, edited by James A. Anderson and Ed-

ward Rosenfeld, MIT Press, Cambridge, Massachusetts, 1988.

[83] Ronald J. Williams. Reinforcement learning in connectionist networks: A

mathematical analysis. Technical Report ICS-8605, Institute for Cognitive

Science, University of California, San Diego, La Jolla, California, 1986.

[84] Ronald J. Williams. A class of gradient-estimating algorithms for reinforcement

learning in neural networks. In Proceedings of the IEEE First International

Conference on Neural Networks, San Diego, California, 1987.

200 BIBLIOGRAPHY

[85] Ronald J. Williams. On the use of backpropagation in associative reinforce-

ment learning. In Proceedings of the IEEE International Conference on Neural

Networks, San Diego, California, 1988.

[86] Ian H. Witten. An adaptive optimal controller for discrete-time markov envi-

ronments. Information and Control, 34:286-295, 1977.

A

